L(s) = 1 | + (0.142 − 0.246i)2-s + (0.0364 − 1.73i)3-s + (0.959 + 1.66i)4-s + (−1.35 − 2.34i)5-s + (−0.422 − 0.255i)6-s + (−2.03 + 3.52i)7-s + 1.11·8-s + (−2.99 − 0.126i)9-s − 0.772·10-s + (2.91 − 1.60i)12-s + (1.92 + 3.33i)13-s + (0.580 + 1.00i)14-s + (−4.11 + 2.25i)15-s + (−1.75 + 3.04i)16-s + 4.32·17-s + (−0.458 + 0.722i)18-s + ⋯ |
L(s) = 1 | + (0.100 − 0.174i)2-s + (0.0210 − 0.999i)3-s + (0.479 + 0.830i)4-s + (−0.605 − 1.04i)5-s + (−0.172 − 0.104i)6-s + (−0.769 + 1.33i)7-s + 0.395·8-s + (−0.999 − 0.0421i)9-s − 0.244·10-s + (0.840 − 0.462i)12-s + (0.534 + 0.924i)13-s + (0.155 + 0.268i)14-s + (−1.06 + 0.583i)15-s + (−0.439 + 0.761i)16-s + 1.04·17-s + (−0.108 + 0.170i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.953 - 0.302i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.953 - 0.302i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.482036106\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.482036106\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.0364 + 1.73i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.142 + 0.246i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (1.35 + 2.34i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (2.03 - 3.52i)T + (-3.5 - 6.06i)T^{2} \) |
| 13 | \( 1 + (-1.92 - 3.33i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 4.32T + 17T^{2} \) |
| 19 | \( 1 - 1.62T + 19T^{2} \) |
| 23 | \( 1 + (-0.932 - 1.61i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.77 + 3.07i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.43 - 4.21i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 7.74T + 37T^{2} \) |
| 41 | \( 1 + (-3.43 - 5.95i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.492 + 0.853i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (2.93 - 5.08i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 1.57T + 53T^{2} \) |
| 59 | \( 1 + (5.68 + 9.84i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.30 - 7.45i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.870 - 1.50i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 5.74T + 71T^{2} \) |
| 73 | \( 1 - 4.04T + 73T^{2} \) |
| 79 | \( 1 + (2.14 - 3.70i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3.25 - 5.62i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 9.26T + 89T^{2} \) |
| 97 | \( 1 + (-3.70 + 6.41i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.592584338548952746375136062014, −8.859799828596976428773769020682, −8.219176945437342678415130528736, −7.59551222811200073822976606959, −6.51272288859730395114213582176, −5.87867641193224545680579123829, −4.66276866074788865558726006329, −3.40052122674708926572647978871, −2.58980648298472202580454874444, −1.30343358311315182654230939991,
0.70330241831311694076527137077, 2.92035617350644230486377782962, 3.50688312669205344366443564798, 4.49622380678850860782590129293, 5.67150964403654310886369759174, 6.38989056150428985319461070075, 7.30365144479810538385219885770, 7.919936613987419700591980151853, 9.354109795980738751209990595742, 10.16049257629523260617015619127