L(s) = 1 | + (0.332 + 0.575i)2-s + (1.61 − 0.635i)3-s + (0.779 − 1.34i)4-s + (−0.558 + 0.967i)5-s + (0.900 + 0.715i)6-s + (1.95 + 3.38i)7-s + 2.36·8-s + (2.19 − 2.04i)9-s − 0.741·10-s + (0.397 − 2.67i)12-s + (−1.33 + 2.31i)13-s + (−1.29 + 2.24i)14-s + (−0.284 + 1.91i)15-s + (−0.773 − 1.33i)16-s + 5.54·17-s + (1.90 + 0.580i)18-s + ⋯ |
L(s) = 1 | + (0.234 + 0.406i)2-s + (0.930 − 0.367i)3-s + (0.389 − 0.674i)4-s + (−0.249 + 0.432i)5-s + (0.367 + 0.292i)6-s + (0.737 + 1.27i)7-s + 0.835·8-s + (0.730 − 0.683i)9-s − 0.234·10-s + (0.114 − 0.770i)12-s + (−0.371 + 0.643i)13-s + (−0.346 + 0.600i)14-s + (−0.0734 + 0.493i)15-s + (−0.193 − 0.334i)16-s + 1.34·17-s + (0.449 + 0.136i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.919 - 0.391i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.919 - 0.391i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.015414031\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.015414031\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.61 + 0.635i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.332 - 0.575i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (0.558 - 0.967i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.95 - 3.38i)T + (-3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (1.33 - 2.31i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 5.54T + 17T^{2} \) |
| 19 | \( 1 + 5.13T + 19T^{2} \) |
| 23 | \( 1 + (1.05 - 1.83i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.541 + 0.937i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.215 + 0.372i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 8.70T + 37T^{2} \) |
| 41 | \( 1 + (-1.45 + 2.52i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.11 - 1.93i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6.41 + 11.1i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 5.64T + 53T^{2} \) |
| 59 | \( 1 + (-1.18 + 2.05i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.04 - 3.53i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.87 + 8.44i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 6.31T + 71T^{2} \) |
| 73 | \( 1 + 11.6T + 73T^{2} \) |
| 79 | \( 1 + (2.25 + 3.90i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.241 + 0.417i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 16.0T + 89T^{2} \) |
| 97 | \( 1 + (4.00 + 6.94i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.829271899511603955861829730624, −8.949573162293633629077205010846, −8.206168198995498304203407635488, −7.37725683371126204815439902145, −6.67810797861341093775222699580, −5.70908888509807073381478797510, −4.89104912884651217658214950035, −3.60965048599121032900910719592, −2.35938500982069301394731907717, −1.66007335129094912325856219909,
1.33977218196768626284038823891, 2.59919376541546735066752466788, 3.63934835568002479382598763640, 4.27948392822330458214427824814, 5.05300923446737974413234540191, 6.77693727547493454798908333807, 7.68813398775334187509595503369, 8.025732688654043165297990952145, 8.776256703221939880196124258669, 10.17763822114304613244439152783