L(s) = 1 | + (−0.288 − 0.500i)2-s + (−1.33 + 1.10i)3-s + (0.833 − 1.44i)4-s + (−1.50 + 2.60i)5-s + (0.938 + 0.346i)6-s + (0.582 + 1.00i)7-s − 2.11·8-s + (0.549 − 2.94i)9-s + 1.73·10-s + (0.487 + 2.84i)12-s + (1.97 − 3.41i)13-s + (0.336 − 0.582i)14-s + (−0.878 − 5.12i)15-s + (−1.05 − 1.82i)16-s − 0.314·17-s + (−1.63 + 0.577i)18-s + ⋯ |
L(s) = 1 | + (−0.204 − 0.353i)2-s + (−0.769 + 0.639i)3-s + (0.416 − 0.721i)4-s + (−0.671 + 1.16i)5-s + (0.383 + 0.141i)6-s + (0.220 + 0.381i)7-s − 0.748·8-s + (0.183 − 0.983i)9-s + 0.548·10-s + (0.140 + 0.821i)12-s + (0.547 − 0.947i)13-s + (0.0899 − 0.155i)14-s + (−0.226 − 1.32i)15-s + (−0.263 − 0.456i)16-s − 0.0762·17-s + (−0.385 + 0.136i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.508 - 0.861i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.508 - 0.861i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9641802364\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9641802364\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.33 - 1.10i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.288 + 0.500i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (1.50 - 2.60i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.582 - 1.00i)T + (-3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (-1.97 + 3.41i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 0.314T + 17T^{2} \) |
| 19 | \( 1 - 6.36T + 19T^{2} \) |
| 23 | \( 1 + (-0.0427 + 0.0740i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.84 - 6.66i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3.26 - 5.65i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 6.24T + 37T^{2} \) |
| 41 | \( 1 + (2.90 - 5.03i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.39 - 5.87i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.163 - 0.283i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 2.42T + 53T^{2} \) |
| 59 | \( 1 + (-1.14 + 1.98i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.84 - 11.8i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.83 - 10.1i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 8.71T + 71T^{2} \) |
| 73 | \( 1 - 2.94T + 73T^{2} \) |
| 79 | \( 1 + (-4.44 - 7.69i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.47 + 4.29i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 2.12T + 89T^{2} \) |
| 97 | \( 1 + (-0.0444 - 0.0769i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46070837778948259156779695460, −9.472036688780818165254655941668, −8.519643630197384353291366544377, −7.24543955927578712060083337483, −6.64738393485729812832046240792, −5.65018345756361644270578606771, −5.06064949418891510277575446864, −3.51208779253188100929964814176, −2.93175045967315076689724228726, −1.13461213007174326011894548411,
0.60407530899053745942241170441, 1.97037779087935003027174073809, 3.67073554450258526298331970664, 4.55591245431578861899967836765, 5.55056772768174829322845757408, 6.52979318851746266399536738838, 7.36221192123164025276498951116, 7.910114838743554738023547860526, 8.643957989135771915031405984268, 9.505349260113856036573040905938