L(s) = 1 | − 1.60i·2-s + 1.41·4-s − 6.21i·5-s − 11.1·7-s − 8.70i·8-s − 9.98·10-s + 17.7·13-s + 17.9i·14-s − 8.31·16-s − 8.53i·17-s − 16.4·19-s − 8.80i·20-s − 25.0i·23-s − 13.5·25-s − 28.5i·26-s + ⋯ |
L(s) = 1 | − 0.803i·2-s + 0.354·4-s − 1.24i·5-s − 1.59·7-s − 1.08i·8-s − 0.998·10-s + 1.36·13-s + 1.27i·14-s − 0.519·16-s − 0.502i·17-s − 0.866·19-s − 0.440i·20-s − 1.09i·23-s − 0.543·25-s − 1.09i·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.9929842646\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9929842646\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + 1.60iT - 4T^{2} \) |
| 5 | \( 1 + 6.21iT - 25T^{2} \) |
| 7 | \( 1 + 11.1T + 49T^{2} \) |
| 13 | \( 1 - 17.7T + 169T^{2} \) |
| 17 | \( 1 + 8.53iT - 289T^{2} \) |
| 19 | \( 1 + 16.4T + 361T^{2} \) |
| 23 | \( 1 + 25.0iT - 529T^{2} \) |
| 29 | \( 1 + 9.46iT - 841T^{2} \) |
| 31 | \( 1 + 46.1T + 961T^{2} \) |
| 37 | \( 1 + 37.4T + 1.36e3T^{2} \) |
| 41 | \( 1 - 51.8iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 55.6T + 1.84e3T^{2} \) |
| 47 | \( 1 - 37.8iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 58.5iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 44.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 10.1T + 3.72e3T^{2} \) |
| 67 | \( 1 + 58.3T + 4.48e3T^{2} \) |
| 71 | \( 1 - 75.1iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 112.T + 5.32e3T^{2} \) |
| 79 | \( 1 + 52.2T + 6.24e3T^{2} \) |
| 83 | \( 1 + 18.0iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 136. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 127.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.095474389182379903667363637585, −8.775059414464044771092325083843, −7.43213318872196013253899630659, −6.41262173273079685412555043457, −5.90730344318992853398573615057, −4.45627416852249953187167695337, −3.63157585435489495355779529089, −2.68996916129519062626356218950, −1.36342041027898595886336821621, −0.29113404827464644187027136212,
1.99841489883646292178510673962, 3.20552549403357173148217824936, 3.75702765973370736733531876199, 5.69111604798454262486085845730, 6.09236963332343341703504499045, 6.92735711899597938797907710216, 7.26855753483584990430123014627, 8.515081230865917396765457029079, 9.237895495899780944406041154302, 10.52949249252658712157281870883