L(s) = 1 | − 8·4-s − 20·7-s + 70·13-s + 64·16-s − 56·19-s − 125·25-s + 160·28-s + 308·31-s + 110·37-s + 520·43-s + 57·49-s − 560·52-s − 182·61-s − 512·64-s − 880·67-s − 1.19e3·73-s + 448·76-s − 884·79-s − 1.40e3·91-s − 1.33e3·97-s + 1.00e3·100-s + 1.82e3·103-s + 646·109-s − 1.28e3·112-s + ⋯ |
L(s) = 1 | − 4-s − 1.07·7-s + 1.49·13-s + 16-s − 0.676·19-s − 25-s + 1.07·28-s + 1.78·31-s + 0.488·37-s + 1.84·43-s + 0.166·49-s − 1.49·52-s − 0.382·61-s − 64-s − 1.60·67-s − 1.90·73-s + 0.676·76-s − 1.25·79-s − 1.61·91-s − 1.39·97-s + 100-s + 1.74·103-s + 0.567·109-s − 1.07·112-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + p^{3} T^{2} \) |
| 5 | \( 1 + p^{3} T^{2} \) |
| 7 | \( 1 + 20 T + p^{3} T^{2} \) |
| 13 | \( 1 - 70 T + p^{3} T^{2} \) |
| 17 | \( 1 + p^{3} T^{2} \) |
| 19 | \( 1 + 56 T + p^{3} T^{2} \) |
| 23 | \( 1 + p^{3} T^{2} \) |
| 29 | \( 1 + p^{3} T^{2} \) |
| 31 | \( 1 - 308 T + p^{3} T^{2} \) |
| 37 | \( 1 - 110 T + p^{3} T^{2} \) |
| 41 | \( 1 + p^{3} T^{2} \) |
| 43 | \( 1 - 520 T + p^{3} T^{2} \) |
| 47 | \( 1 + p^{3} T^{2} \) |
| 53 | \( 1 + p^{3} T^{2} \) |
| 59 | \( 1 + p^{3} T^{2} \) |
| 61 | \( 1 + 182 T + p^{3} T^{2} \) |
| 67 | \( 1 + 880 T + p^{3} T^{2} \) |
| 71 | \( 1 + p^{3} T^{2} \) |
| 73 | \( 1 + 1190 T + p^{3} T^{2} \) |
| 79 | \( 1 + 884 T + p^{3} T^{2} \) |
| 83 | \( 1 + p^{3} T^{2} \) |
| 89 | \( 1 + p^{3} T^{2} \) |
| 97 | \( 1 + 1330 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.023325032662009016438169896852, −8.469981308978892847484600269566, −7.52921288448631499016195244893, −6.20708560570001433669525972176, −5.92653962978697401199799126894, −4.49734756895704412731413697281, −3.83680675497939001345361357227, −2.85489522010530952541793293665, −1.16554657404782015421376642212, 0,
1.16554657404782015421376642212, 2.85489522010530952541793293665, 3.83680675497939001345361357227, 4.49734756895704412731413697281, 5.92653962978697401199799126894, 6.20708560570001433669525972176, 7.52921288448631499016195244893, 8.469981308978892847484600269566, 9.023325032662009016438169896852