Properties

Label 2-33e2-1.1-c3-0-77
Degree $2$
Conductor $1089$
Sign $-1$
Analytic cond. $64.2530$
Root an. cond. $8.01580$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·4-s − 20·7-s + 70·13-s + 64·16-s − 56·19-s − 125·25-s + 160·28-s + 308·31-s + 110·37-s + 520·43-s + 57·49-s − 560·52-s − 182·61-s − 512·64-s − 880·67-s − 1.19e3·73-s + 448·76-s − 884·79-s − 1.40e3·91-s − 1.33e3·97-s + 1.00e3·100-s + 1.82e3·103-s + 646·109-s − 1.28e3·112-s + ⋯
L(s)  = 1  − 4-s − 1.07·7-s + 1.49·13-s + 16-s − 0.676·19-s − 25-s + 1.07·28-s + 1.78·31-s + 0.488·37-s + 1.84·43-s + 0.166·49-s − 1.49·52-s − 0.382·61-s − 64-s − 1.60·67-s − 1.90·73-s + 0.676·76-s − 1.25·79-s − 1.61·91-s − 1.39·97-s + 100-s + 1.74·103-s + 0.567·109-s − 1.07·112-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1089\)    =    \(3^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(64.2530\)
Root analytic conductor: \(8.01580\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1089,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2 \( 1 + p^{3} T^{2} \)
5 \( 1 + p^{3} T^{2} \)
7 \( 1 + 20 T + p^{3} T^{2} \)
13 \( 1 - 70 T + p^{3} T^{2} \)
17 \( 1 + p^{3} T^{2} \)
19 \( 1 + 56 T + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 + p^{3} T^{2} \)
31 \( 1 - 308 T + p^{3} T^{2} \)
37 \( 1 - 110 T + p^{3} T^{2} \)
41 \( 1 + p^{3} T^{2} \)
43 \( 1 - 520 T + p^{3} T^{2} \)
47 \( 1 + p^{3} T^{2} \)
53 \( 1 + p^{3} T^{2} \)
59 \( 1 + p^{3} T^{2} \)
61 \( 1 + 182 T + p^{3} T^{2} \)
67 \( 1 + 880 T + p^{3} T^{2} \)
71 \( 1 + p^{3} T^{2} \)
73 \( 1 + 1190 T + p^{3} T^{2} \)
79 \( 1 + 884 T + p^{3} T^{2} \)
83 \( 1 + p^{3} T^{2} \)
89 \( 1 + p^{3} T^{2} \)
97 \( 1 + 1330 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.023325032662009016438169896852, −8.469981308978892847484600269566, −7.52921288448631499016195244893, −6.20708560570001433669525972176, −5.92653962978697401199799126894, −4.49734756895704412731413697281, −3.83680675497939001345361357227, −2.85489522010530952541793293665, −1.16554657404782015421376642212, 0, 1.16554657404782015421376642212, 2.85489522010530952541793293665, 3.83680675497939001345361357227, 4.49734756895704412731413697281, 5.92653962978697401199799126894, 6.20708560570001433669525972176, 7.52921288448631499016195244893, 8.469981308978892847484600269566, 9.023325032662009016438169896852

Graph of the $Z$-function along the critical line