Properties

Label 2-33e2-1.1-c1-0-40
Degree $2$
Conductor $1089$
Sign $-1$
Analytic cond. $8.69570$
Root an. cond. $2.94884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.14·2-s + 2.61·4-s − 2.14·5-s − 4.23·7-s + 1.32·8-s − 4.61·10-s + 0.236·13-s − 9.10·14-s − 2.38·16-s − 6.13·17-s − 2.38·19-s − 5.62·20-s + 3.98·23-s − 0.381·25-s + 0.507·26-s − 11.0·28-s + 6.95·29-s − 4.61·31-s − 7.77·32-s − 13.1·34-s + 9.10·35-s + 1.76·37-s − 5.11·38-s − 2.85·40-s − 2.96·41-s + 2.70·43-s + 8.56·46-s + ⋯
L(s)  = 1  + 1.51·2-s + 1.30·4-s − 0.961·5-s − 1.60·7-s + 0.469·8-s − 1.46·10-s + 0.0654·13-s − 2.43·14-s − 0.595·16-s − 1.48·17-s − 0.546·19-s − 1.25·20-s + 0.830·23-s − 0.0763·25-s + 0.0994·26-s − 2.09·28-s + 1.29·29-s − 0.829·31-s − 1.37·32-s − 2.26·34-s + 1.53·35-s + 0.289·37-s − 0.830·38-s − 0.451·40-s − 0.463·41-s + 0.412·43-s + 1.26·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1089\)    =    \(3^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(8.69570\)
Root analytic conductor: \(2.94884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1089,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2 \( 1 - 2.14T + 2T^{2} \)
5 \( 1 + 2.14T + 5T^{2} \)
7 \( 1 + 4.23T + 7T^{2} \)
13 \( 1 - 0.236T + 13T^{2} \)
17 \( 1 + 6.13T + 17T^{2} \)
19 \( 1 + 2.38T + 19T^{2} \)
23 \( 1 - 3.98T + 23T^{2} \)
29 \( 1 - 6.95T + 29T^{2} \)
31 \( 1 + 4.61T + 31T^{2} \)
37 \( 1 - 1.76T + 37T^{2} \)
41 \( 1 + 2.96T + 41T^{2} \)
43 \( 1 - 2.70T + 43T^{2} \)
47 \( 1 - 3.47T + 47T^{2} \)
53 \( 1 + 1.83T + 53T^{2} \)
59 \( 1 + 7.46T + 59T^{2} \)
61 \( 1 + 11.3T + 61T^{2} \)
67 \( 1 + 2.85T + 67T^{2} \)
71 \( 1 - 10.7T + 71T^{2} \)
73 \( 1 - 2.47T + 73T^{2} \)
79 \( 1 + 9.47T + 79T^{2} \)
83 \( 1 - 8.28T + 83T^{2} \)
89 \( 1 - 8.90T + 89T^{2} \)
97 \( 1 - 11.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.383010190521855664240977397613, −8.707203788414895371905541439593, −7.40674683574967194636288663023, −6.59331139707329734387532911045, −6.14456172844851917404305537478, −4.87830124815686636564628323552, −4.10481830365529033694937838549, −3.37411237312926667952477792284, −2.52935291967428240028390260955, 0, 2.52935291967428240028390260955, 3.37411237312926667952477792284, 4.10481830365529033694937838549, 4.87830124815686636564628323552, 6.14456172844851917404305537478, 6.59331139707329734387532911045, 7.40674683574967194636288663023, 8.707203788414895371905541439593, 9.383010190521855664240977397613

Graph of the $Z$-function along the critical line