L(s) = 1 | − 1.54·2-s + 0.381·4-s + 1.54·5-s + 0.236·7-s + 2.49·8-s − 2.38·10-s − 4.23·13-s − 0.364·14-s − 4.61·16-s − 5.94·17-s − 4.61·19-s + 0.589·20-s + 7.49·23-s − 2.61·25-s + 6.53·26-s + 0.0901·28-s + 1.90·29-s − 2.38·31-s + 2.13·32-s + 9.18·34-s + 0.364·35-s + 6.23·37-s + 7.12·38-s + 3.85·40-s + 5.58·41-s − 10.7·43-s − 11.5·46-s + ⋯ |
L(s) = 1 | − 1.09·2-s + 0.190·4-s + 0.690·5-s + 0.0892·7-s + 0.882·8-s − 0.753·10-s − 1.17·13-s − 0.0973·14-s − 1.15·16-s − 1.44·17-s − 1.05·19-s + 0.131·20-s + 1.56·23-s − 0.523·25-s + 1.28·26-s + 0.0170·28-s + 0.354·29-s − 0.427·31-s + 0.377·32-s + 1.57·34-s + 0.0615·35-s + 1.02·37-s + 1.15·38-s + 0.609·40-s + 0.872·41-s − 1.63·43-s − 1.70·46-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + 1.54T + 2T^{2} \) |
| 5 | \( 1 - 1.54T + 5T^{2} \) |
| 7 | \( 1 - 0.236T + 7T^{2} \) |
| 13 | \( 1 + 4.23T + 13T^{2} \) |
| 17 | \( 1 + 5.94T + 17T^{2} \) |
| 19 | \( 1 + 4.61T + 19T^{2} \) |
| 23 | \( 1 - 7.49T + 23T^{2} \) |
| 29 | \( 1 - 1.90T + 29T^{2} \) |
| 31 | \( 1 + 2.38T + 31T^{2} \) |
| 37 | \( 1 - 6.23T + 37T^{2} \) |
| 41 | \( 1 - 5.58T + 41T^{2} \) |
| 43 | \( 1 + 10.7T + 43T^{2} \) |
| 47 | \( 1 - 0.953T + 47T^{2} \) |
| 53 | \( 1 + 9.03T + 53T^{2} \) |
| 59 | \( 1 + 8.44T + 59T^{2} \) |
| 61 | \( 1 - 4.32T + 61T^{2} \) |
| 67 | \( 1 - 3.85T + 67T^{2} \) |
| 71 | \( 1 + 7.71T + 71T^{2} \) |
| 73 | \( 1 + 6.47T + 73T^{2} \) |
| 79 | \( 1 + 0.527T + 79T^{2} \) |
| 83 | \( 1 - 4.40T + 83T^{2} \) |
| 89 | \( 1 + 16.7T + 89T^{2} \) |
| 97 | \( 1 + 12.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.405567251275610194458810268288, −8.832216578539441496330019211840, −7.978782643978161034835560934590, −7.08011402581972262837050978198, −6.34259358771959291204506303583, −5.02113543791700403136738876090, −4.37679416259494002266349194527, −2.63464502172698237464699743788, −1.66859312033851710556084680056, 0,
1.66859312033851710556084680056, 2.63464502172698237464699743788, 4.37679416259494002266349194527, 5.02113543791700403136738876090, 6.34259358771959291204506303583, 7.08011402581972262837050978198, 7.978782643978161034835560934590, 8.832216578539441496330019211840, 9.405567251275610194458810268288