Properties

Label 2-33e2-1.1-c1-0-16
Degree $2$
Conductor $1089$
Sign $1$
Analytic cond. $8.69570$
Root an. cond. $2.94884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.618·2-s − 1.61·4-s + 2.61·5-s + 3·7-s − 2.23·8-s + 1.61·10-s + 1.76·13-s + 1.85·14-s + 1.85·16-s − 1.61·17-s + 5.85·19-s − 4.23·20-s − 3.47·23-s + 1.85·25-s + 1.09·26-s − 4.85·28-s − 4.47·29-s + 2.85·31-s + 5.61·32-s − 1.00·34-s + 7.85·35-s + 0.236·37-s + 3.61·38-s − 5.85·40-s + 11.9·41-s + 6.23·43-s − 2.14·46-s + ⋯
L(s)  = 1  + 0.437·2-s − 0.809·4-s + 1.17·5-s + 1.13·7-s − 0.790·8-s + 0.511·10-s + 0.489·13-s + 0.495·14-s + 0.463·16-s − 0.392·17-s + 1.34·19-s − 0.947·20-s − 0.723·23-s + 0.370·25-s + 0.213·26-s − 0.917·28-s − 0.830·29-s + 0.512·31-s + 0.993·32-s − 0.171·34-s + 1.32·35-s + 0.0388·37-s + 0.586·38-s − 0.925·40-s + 1.86·41-s + 0.950·43-s − 0.316·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1089 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1089\)    =    \(3^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(8.69570\)
Root analytic conductor: \(2.94884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1089,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.303607830\)
\(L(\frac12)\) \(\approx\) \(2.303607830\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2 \( 1 - 0.618T + 2T^{2} \)
5 \( 1 - 2.61T + 5T^{2} \)
7 \( 1 - 3T + 7T^{2} \)
13 \( 1 - 1.76T + 13T^{2} \)
17 \( 1 + 1.61T + 17T^{2} \)
19 \( 1 - 5.85T + 19T^{2} \)
23 \( 1 + 3.47T + 23T^{2} \)
29 \( 1 + 4.47T + 29T^{2} \)
31 \( 1 - 2.85T + 31T^{2} \)
37 \( 1 - 0.236T + 37T^{2} \)
41 \( 1 - 11.9T + 41T^{2} \)
43 \( 1 - 6.23T + 43T^{2} \)
47 \( 1 + 1.61T + 47T^{2} \)
53 \( 1 - 9.61T + 53T^{2} \)
59 \( 1 + 10.3T + 59T^{2} \)
61 \( 1 - 7.85T + 61T^{2} \)
67 \( 1 + 9.56T + 67T^{2} \)
71 \( 1 - 5.56T + 71T^{2} \)
73 \( 1 + 3.23T + 73T^{2} \)
79 \( 1 - 9.47T + 79T^{2} \)
83 \( 1 + 0.708T + 83T^{2} \)
89 \( 1 + 0.527T + 89T^{2} \)
97 \( 1 + 14.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.669675606154122978217542182674, −9.205434234410258669521308365187, −8.292843353602385998952492378525, −7.47633320726853152340356988229, −6.07244157986135582478456731306, −5.58126377552550788542594857978, −4.74953947796879796162142854043, −3.83717781916700393658507381675, −2.46886049989690408429082169423, −1.22954921924342492536043808731, 1.22954921924342492536043808731, 2.46886049989690408429082169423, 3.83717781916700393658507381675, 4.74953947796879796162142854043, 5.58126377552550788542594857978, 6.07244157986135582478456731306, 7.47633320726853152340356988229, 8.292843353602385998952492378525, 9.205434234410258669521308365187, 9.669675606154122978217542182674

Graph of the $Z$-function along the critical line