L(s) = 1 | − 2-s + 4-s − 5-s − 2·7-s − 8-s + 10-s − 11-s − 13-s + 2·14-s + 16-s − 5·19-s − 20-s + 22-s − 3·23-s + 25-s + 26-s − 2·28-s − 9·29-s − 3·31-s − 32-s + 2·35-s − 5·37-s + 5·38-s + 40-s + 8·41-s + 5·43-s − 44-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.755·7-s − 0.353·8-s + 0.316·10-s − 0.301·11-s − 0.277·13-s + 0.534·14-s + 1/4·16-s − 1.14·19-s − 0.223·20-s + 0.213·22-s − 0.625·23-s + 1/5·25-s + 0.196·26-s − 0.377·28-s − 1.67·29-s − 0.538·31-s − 0.176·32-s + 0.338·35-s − 0.821·37-s + 0.811·38-s + 0.158·40-s + 1.24·41-s + 0.762·43-s − 0.150·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
| 13 | \( 1 + T \) |
| 17 | \( 1 \) |
good | 7 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 + T + p T^{2} \) |
| 19 | \( 1 + 5 T + p T^{2} \) |
| 23 | \( 1 + 3 T + p T^{2} \) |
| 29 | \( 1 + 9 T + p T^{2} \) |
| 31 | \( 1 + 3 T + p T^{2} \) |
| 37 | \( 1 + 5 T + p T^{2} \) |
| 41 | \( 1 - 8 T + p T^{2} \) |
| 43 | \( 1 - 5 T + p T^{2} \) |
| 47 | \( 1 - 8 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 + 14 T + p T^{2} \) |
| 67 | \( 1 + 2 T + p T^{2} \) |
| 71 | \( 1 - 3 T + p T^{2} \) |
| 73 | \( 1 + 3 T + p T^{2} \) |
| 79 | \( 1 - 10 T + p T^{2} \) |
| 83 | \( 1 - 18 T + p T^{2} \) |
| 89 | \( 1 + p T^{2} \) |
| 97 | \( 1 + 9 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.51112928173094, −12.42137443032475, −12.04028512548734, −11.15738919908247, −10.94948458182741, −10.63895438070521, −10.05555235851631, −9.489383552800632, −9.188866550386067, −8.842286518120537, −8.149293812853518, −7.666769285774014, −7.486916810355341, −6.840225461277833, −6.339892675604337, −5.909071200174022, −5.469825463289482, −4.683629841037758, −4.217593472184467, −3.597002140232356, −3.240532402479191, −2.437782555397273, −2.094584119161848, −1.400802679784014, −0.4704689461803507, 0,
0.4704689461803507, 1.400802679784014, 2.094584119161848, 2.437782555397273, 3.240532402479191, 3.597002140232356, 4.217593472184467, 4.683629841037758, 5.469825463289482, 5.909071200174022, 6.339892675604337, 6.840225461277833, 7.486916810355341, 7.666769285774014, 8.149293812853518, 8.842286518120537, 9.188866550386067, 9.489383552800632, 10.05555235851631, 10.63895438070521, 10.94948458182741, 11.15738919908247, 12.04028512548734, 12.42137443032475, 12.51112928173094