Properties

Label 2-3381-1.1-c1-0-146
Degree $2$
Conductor $3381$
Sign $-1$
Analytic cond. $26.9974$
Root an. cond. $5.19590$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.27·2-s + 3-s + 3.17·4-s − 2.39·5-s + 2.27·6-s + 2.66·8-s + 9-s − 5.44·10-s − 4.56·11-s + 3.17·12-s − 5.05·13-s − 2.39·15-s − 0.274·16-s + 1.44·17-s + 2.27·18-s − 1.98·19-s − 7.60·20-s − 10.3·22-s − 23-s + 2.66·24-s + 0.737·25-s − 11.4·26-s + 27-s + 3.68·29-s − 5.44·30-s + 3.44·31-s − 5.96·32-s + ⋯
L(s)  = 1  + 1.60·2-s + 0.577·3-s + 1.58·4-s − 1.07·5-s + 0.928·6-s + 0.943·8-s + 0.333·9-s − 1.72·10-s − 1.37·11-s + 0.916·12-s − 1.40·13-s − 0.618·15-s − 0.0686·16-s + 0.351·17-s + 0.536·18-s − 0.454·19-s − 1.69·20-s − 2.21·22-s − 0.208·23-s + 0.544·24-s + 0.147·25-s − 2.25·26-s + 0.192·27-s + 0.685·29-s − 0.994·30-s + 0.619·31-s − 1.05·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3381 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3381 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3381\)    =    \(3 \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(26.9974\)
Root analytic conductor: \(5.19590\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3381,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
7 \( 1 \)
23 \( 1 + T \)
good2 \( 1 - 2.27T + 2T^{2} \)
5 \( 1 + 2.39T + 5T^{2} \)
11 \( 1 + 4.56T + 11T^{2} \)
13 \( 1 + 5.05T + 13T^{2} \)
17 \( 1 - 1.44T + 17T^{2} \)
19 \( 1 + 1.98T + 19T^{2} \)
29 \( 1 - 3.68T + 29T^{2} \)
31 \( 1 - 3.44T + 31T^{2} \)
37 \( 1 + 3.99T + 37T^{2} \)
41 \( 1 + 1.77T + 41T^{2} \)
43 \( 1 + 1.25T + 43T^{2} \)
47 \( 1 + 2.87T + 47T^{2} \)
53 \( 1 + 10.4T + 53T^{2} \)
59 \( 1 - 14.1T + 59T^{2} \)
61 \( 1 + 8.37T + 61T^{2} \)
67 \( 1 + 7.73T + 67T^{2} \)
71 \( 1 + 0.946T + 71T^{2} \)
73 \( 1 + 3.86T + 73T^{2} \)
79 \( 1 - 4.23T + 79T^{2} \)
83 \( 1 + 10.8T + 83T^{2} \)
89 \( 1 + 0.262T + 89T^{2} \)
97 \( 1 - 7.20T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.939152662878256910562222358360, −7.47094403941771536542581421003, −6.73381048247869307133117703557, −5.73141874531871809251266855853, −4.82007220982810122412169922035, −4.53410876018437973770175929554, −3.49230347163227219109367895861, −2.89795394102340932445339098090, −2.12731864060647501082596650489, 0, 2.12731864060647501082596650489, 2.89795394102340932445339098090, 3.49230347163227219109367895861, 4.53410876018437973770175929554, 4.82007220982810122412169922035, 5.73141874531871809251266855853, 6.73381048247869307133117703557, 7.47094403941771536542581421003, 7.939152662878256910562222358360

Graph of the $Z$-function along the critical line