Properties

Label 2-3380-13.12-c1-0-1
Degree $2$
Conductor $3380$
Sign $-0.960 + 0.277i$
Analytic cond. $26.9894$
Root an. cond. $5.19513$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.33·3-s + i·5-s − 0.399i·7-s + 2.43·9-s + 1.73i·11-s − 2.33i·15-s − 0.692·17-s + 5.37i·19-s + 0.932i·21-s + 0.107·23-s − 25-s + 1.30·27-s − 4.90·29-s − 7.86i·31-s − 4.03i·33-s + ⋯
L(s)  = 1  − 1.34·3-s + 0.447i·5-s − 0.151i·7-s + 0.813·9-s + 0.522i·11-s − 0.602i·15-s − 0.167·17-s + 1.23i·19-s + 0.203i·21-s + 0.0223·23-s − 0.200·25-s + 0.251·27-s − 0.910·29-s − 1.41i·31-s − 0.703i·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.960 + 0.277i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.960 + 0.277i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3380\)    =    \(2^{2} \cdot 5 \cdot 13^{2}\)
Sign: $-0.960 + 0.277i$
Analytic conductor: \(26.9894\)
Root analytic conductor: \(5.19513\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3380} (3041, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3380,\ (\ :1/2),\ -0.960 + 0.277i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1569378295\)
\(L(\frac12)\) \(\approx\) \(0.1569378295\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - iT \)
13 \( 1 \)
good3 \( 1 + 2.33T + 3T^{2} \)
7 \( 1 + 0.399iT - 7T^{2} \)
11 \( 1 - 1.73iT - 11T^{2} \)
17 \( 1 + 0.692T + 17T^{2} \)
19 \( 1 - 5.37iT - 19T^{2} \)
23 \( 1 - 0.107T + 23T^{2} \)
29 \( 1 + 4.90T + 29T^{2} \)
31 \( 1 + 7.86iT - 31T^{2} \)
37 \( 1 - 2.26iT - 37T^{2} \)
41 \( 1 - 7.73iT - 41T^{2} \)
43 \( 1 + 6.01T + 43T^{2} \)
47 \( 1 - 3.46iT - 47T^{2} \)
53 \( 1 - 11.7T + 53T^{2} \)
59 \( 1 - 7.27iT - 59T^{2} \)
61 \( 1 - 8.68T + 61T^{2} \)
67 \( 1 + 1.32iT - 67T^{2} \)
71 \( 1 - 3.87iT - 71T^{2} \)
73 \( 1 + 10.2iT - 73T^{2} \)
79 \( 1 + 13.1T + 79T^{2} \)
83 \( 1 + 14.0iT - 83T^{2} \)
89 \( 1 - 0.347iT - 89T^{2} \)
97 \( 1 - 8.85iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.132329286735085529658773844836, −8.086842057166257253861319962957, −7.38795018642855657237536555590, −6.65876916521293138133538392014, −5.95806669464593248887446927773, −5.43599164283332385510101056419, −4.47054060118645504378397257411, −3.75512473284014225096563328414, −2.49387704102364303022550732024, −1.32792801023467508076199930019, 0.06902947732918989446907537546, 1.06421093969370159514749891295, 2.39111294339031115176473140353, 3.62108154760282379684566341315, 4.56329113752725019771556759430, 5.45094787805754206614150220662, 5.59976656506954207708665208815, 6.82158184615124844798651271227, 7.06573784738294797522096058503, 8.414449443220147060720399257753

Graph of the $Z$-function along the critical line