L(s) = 1 | − 2.33·3-s + i·5-s − 0.399i·7-s + 2.43·9-s + 1.73i·11-s − 2.33i·15-s − 0.692·17-s + 5.37i·19-s + 0.932i·21-s + 0.107·23-s − 25-s + 1.30·27-s − 4.90·29-s − 7.86i·31-s − 4.03i·33-s + ⋯ |
L(s) = 1 | − 1.34·3-s + 0.447i·5-s − 0.151i·7-s + 0.813·9-s + 0.522i·11-s − 0.602i·15-s − 0.167·17-s + 1.23i·19-s + 0.203i·21-s + 0.0223·23-s − 0.200·25-s + 0.251·27-s − 0.910·29-s − 1.41i·31-s − 0.703i·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.960 + 0.277i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.960 + 0.277i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1569378295\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1569378295\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + 2.33T + 3T^{2} \) |
| 7 | \( 1 + 0.399iT - 7T^{2} \) |
| 11 | \( 1 - 1.73iT - 11T^{2} \) |
| 17 | \( 1 + 0.692T + 17T^{2} \) |
| 19 | \( 1 - 5.37iT - 19T^{2} \) |
| 23 | \( 1 - 0.107T + 23T^{2} \) |
| 29 | \( 1 + 4.90T + 29T^{2} \) |
| 31 | \( 1 + 7.86iT - 31T^{2} \) |
| 37 | \( 1 - 2.26iT - 37T^{2} \) |
| 41 | \( 1 - 7.73iT - 41T^{2} \) |
| 43 | \( 1 + 6.01T + 43T^{2} \) |
| 47 | \( 1 - 3.46iT - 47T^{2} \) |
| 53 | \( 1 - 11.7T + 53T^{2} \) |
| 59 | \( 1 - 7.27iT - 59T^{2} \) |
| 61 | \( 1 - 8.68T + 61T^{2} \) |
| 67 | \( 1 + 1.32iT - 67T^{2} \) |
| 71 | \( 1 - 3.87iT - 71T^{2} \) |
| 73 | \( 1 + 10.2iT - 73T^{2} \) |
| 79 | \( 1 + 13.1T + 79T^{2} \) |
| 83 | \( 1 + 14.0iT - 83T^{2} \) |
| 89 | \( 1 - 0.347iT - 89T^{2} \) |
| 97 | \( 1 - 8.85iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.132329286735085529658773844836, −8.086842057166257253861319962957, −7.38795018642855657237536555590, −6.65876916521293138133538392014, −5.95806669464593248887446927773, −5.43599164283332385510101056419, −4.47054060118645504378397257411, −3.75512473284014225096563328414, −2.49387704102364303022550732024, −1.32792801023467508076199930019,
0.06902947732918989446907537546, 1.06421093969370159514749891295, 2.39111294339031115176473140353, 3.62108154760282379684566341315, 4.56329113752725019771556759430, 5.45094787805754206614150220662, 5.59976656506954207708665208815, 6.82158184615124844798651271227, 7.06573784738294797522096058503, 8.414449443220147060720399257753