L(s) = 1 | − 8i·2-s + 12·3-s − 64·4-s − 210i·5-s − 96i·6-s − 1.01e3i·7-s + 512i·8-s − 2.04e3·9-s − 1.68e3·10-s − 1.09e3i·11-s − 768·12-s − 8.12e3·14-s − 2.52e3i·15-s + 4.09e3·16-s − 1.47e4·17-s + 1.63e4i·18-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.256·3-s − 0.5·4-s − 0.751i·5-s − 0.181i·6-s − 1.11i·7-s + 0.353i·8-s − 0.934·9-s − 0.531·10-s − 0.247i·11-s − 0.128·12-s − 0.791·14-s − 0.192i·15-s + 0.250·16-s − 0.725·17-s + 0.660i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.554 - 0.832i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.554 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.1997245180\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1997245180\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 8iT \) |
| 13 | \( 1 \) |
good | 3 | \( 1 - 12T + 2.18e3T^{2} \) |
| 5 | \( 1 + 210iT - 7.81e4T^{2} \) |
| 7 | \( 1 + 1.01e3iT - 8.23e5T^{2} \) |
| 11 | \( 1 + 1.09e3iT - 1.94e7T^{2} \) |
| 17 | \( 1 + 1.47e4T + 4.10e8T^{2} \) |
| 19 | \( 1 + 3.99e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 + 6.87e4T + 3.40e9T^{2} \) |
| 29 | \( 1 + 1.02e5T + 1.72e10T^{2} \) |
| 31 | \( 1 - 2.27e5iT - 2.75e10T^{2} \) |
| 37 | \( 1 + 1.60e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 - 1.08e4iT - 1.94e11T^{2} \) |
| 43 | \( 1 - 6.30e5T + 2.71e11T^{2} \) |
| 47 | \( 1 + 4.72e5iT - 5.06e11T^{2} \) |
| 53 | \( 1 + 1.49e6T + 1.17e12T^{2} \) |
| 59 | \( 1 + 2.64e6iT - 2.48e12T^{2} \) |
| 61 | \( 1 - 8.27e5T + 3.14e12T^{2} \) |
| 67 | \( 1 + 1.26e5iT - 6.06e12T^{2} \) |
| 71 | \( 1 + 1.41e6iT - 9.09e12T^{2} \) |
| 73 | \( 1 + 9.80e5iT - 1.10e13T^{2} \) |
| 79 | \( 1 + 3.56e6T + 1.92e13T^{2} \) |
| 83 | \( 1 - 5.67e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 - 1.19e7iT - 4.42e13T^{2} \) |
| 97 | \( 1 - 8.68e6iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.466361913990726472536375141835, −8.798923823847885865299870550200, −7.925011510311354762228810761728, −6.70590073922238715424041614328, −5.32675636586619712859858927556, −4.38277525488837341635613550839, −3.38471178110319624090115645779, −2.17418299279376144401497916770, −0.857719501888038576149720104183, −0.04922624623075864851297871490,
2.01833355020686133479772528893, 2.98459595240113472773452060380, 4.24284580436962355296782159004, 5.76565046640810504681242304186, 6.08210471049016554855184256481, 7.42121979422909585781242846905, 8.277609522282767611694104794148, 9.075672135532862336299556775536, 9.994092214543195973380672177484, 11.16101331040623644207714090406