Properties

Label 2-338-13.12-c7-0-84
Degree $2$
Conductor $338$
Sign $0.554 - 0.832i$
Analytic cond. $105.586$
Root an. cond. $10.2755$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8i·2-s + 12·3-s − 64·4-s − 210i·5-s − 96i·6-s − 1.01e3i·7-s + 512i·8-s − 2.04e3·9-s − 1.68e3·10-s − 1.09e3i·11-s − 768·12-s − 8.12e3·14-s − 2.52e3i·15-s + 4.09e3·16-s − 1.47e4·17-s + 1.63e4i·18-s + ⋯
L(s)  = 1  − 0.707i·2-s + 0.256·3-s − 0.5·4-s − 0.751i·5-s − 0.181i·6-s − 1.11i·7-s + 0.353i·8-s − 0.934·9-s − 0.531·10-s − 0.247i·11-s − 0.128·12-s − 0.791·14-s − 0.192i·15-s + 0.250·16-s − 0.725·17-s + 0.660i·18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.554 - 0.832i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.554 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $0.554 - 0.832i$
Analytic conductor: \(105.586\)
Root analytic conductor: \(10.2755\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{338} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 338,\ (\ :7/2),\ 0.554 - 0.832i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.1997245180\)
\(L(\frac12)\) \(\approx\) \(0.1997245180\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8iT \)
13 \( 1 \)
good3 \( 1 - 12T + 2.18e3T^{2} \)
5 \( 1 + 210iT - 7.81e4T^{2} \)
7 \( 1 + 1.01e3iT - 8.23e5T^{2} \)
11 \( 1 + 1.09e3iT - 1.94e7T^{2} \)
17 \( 1 + 1.47e4T + 4.10e8T^{2} \)
19 \( 1 + 3.99e4iT - 8.93e8T^{2} \)
23 \( 1 + 6.87e4T + 3.40e9T^{2} \)
29 \( 1 + 1.02e5T + 1.72e10T^{2} \)
31 \( 1 - 2.27e5iT - 2.75e10T^{2} \)
37 \( 1 + 1.60e5iT - 9.49e10T^{2} \)
41 \( 1 - 1.08e4iT - 1.94e11T^{2} \)
43 \( 1 - 6.30e5T + 2.71e11T^{2} \)
47 \( 1 + 4.72e5iT - 5.06e11T^{2} \)
53 \( 1 + 1.49e6T + 1.17e12T^{2} \)
59 \( 1 + 2.64e6iT - 2.48e12T^{2} \)
61 \( 1 - 8.27e5T + 3.14e12T^{2} \)
67 \( 1 + 1.26e5iT - 6.06e12T^{2} \)
71 \( 1 + 1.41e6iT - 9.09e12T^{2} \)
73 \( 1 + 9.80e5iT - 1.10e13T^{2} \)
79 \( 1 + 3.56e6T + 1.92e13T^{2} \)
83 \( 1 - 5.67e6iT - 2.71e13T^{2} \)
89 \( 1 - 1.19e7iT - 4.42e13T^{2} \)
97 \( 1 - 8.68e6iT - 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.466361913990726472536375141835, −8.798923823847885865299870550200, −7.925011510311354762228810761728, −6.70590073922238715424041614328, −5.32675636586619712859858927556, −4.38277525488837341635613550839, −3.38471178110319624090115645779, −2.17418299279376144401497916770, −0.857719501888038576149720104183, −0.04922624623075864851297871490, 2.01833355020686133479772528893, 2.98459595240113472773452060380, 4.24284580436962355296782159004, 5.76565046640810504681242304186, 6.08210471049016554855184256481, 7.42121979422909585781242846905, 8.277609522282767611694104794148, 9.075672135532862336299556775536, 9.994092214543195973380672177484, 11.16101331040623644207714090406

Graph of the $Z$-function along the critical line