Properties

Label 2-338-1.1-c7-0-54
Degree $2$
Conductor $338$
Sign $-1$
Analytic cond. $105.586$
Root an. cond. $10.2755$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s − 39·3-s + 64·4-s − 385·5-s − 312·6-s + 293·7-s + 512·8-s − 666·9-s − 3.08e3·10-s + 5.40e3·11-s − 2.49e3·12-s + 2.34e3·14-s + 1.50e4·15-s + 4.09e3·16-s − 2.10e4·17-s − 5.32e3·18-s + 2.73e4·19-s − 2.46e4·20-s − 1.14e4·21-s + 4.32e4·22-s − 6.30e4·23-s − 1.99e4·24-s + 7.01e4·25-s + 1.11e5·27-s + 1.87e4·28-s + 1.22e5·29-s + 1.20e5·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.833·3-s + 1/2·4-s − 1.37·5-s − 0.589·6-s + 0.322·7-s + 0.353·8-s − 0.304·9-s − 0.973·10-s + 1.22·11-s − 0.416·12-s + 0.228·14-s + 1.14·15-s + 1/4·16-s − 1.03·17-s − 0.215·18-s + 0.913·19-s − 0.688·20-s − 0.269·21-s + 0.865·22-s − 1.08·23-s − 0.294·24-s + 0.897·25-s + 1.08·27-s + 0.161·28-s + 0.930·29-s + 0.812·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(105.586\)
Root analytic conductor: \(10.2755\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 338,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{3} T \)
13 \( 1 \)
good3 \( 1 + 13 p T + p^{7} T^{2} \)
5 \( 1 + 77 p T + p^{7} T^{2} \)
7 \( 1 - 293 T + p^{7} T^{2} \)
11 \( 1 - 5402 T + p^{7} T^{2} \)
17 \( 1 + 21011 T + p^{7} T^{2} \)
19 \( 1 - 27326 T + p^{7} T^{2} \)
23 \( 1 + 63072 T + p^{7} T^{2} \)
29 \( 1 - 122238 T + p^{7} T^{2} \)
31 \( 1 - 208396 T + p^{7} T^{2} \)
37 \( 1 - 442379 T + p^{7} T^{2} \)
41 \( 1 + 58000 T + p^{7} T^{2} \)
43 \( 1 + 202025 T + p^{7} T^{2} \)
47 \( 1 + 588511 T + p^{7} T^{2} \)
53 \( 1 - 1684336 T + p^{7} T^{2} \)
59 \( 1 - 442630 T + p^{7} T^{2} \)
61 \( 1 + 1083608 T + p^{7} T^{2} \)
67 \( 1 + 3443486 T + p^{7} T^{2} \)
71 \( 1 + 2084705 T + p^{7} T^{2} \)
73 \( 1 + 5937890 T + p^{7} T^{2} \)
79 \( 1 + 6609256 T + p^{7} T^{2} \)
83 \( 1 - 142740 T + p^{7} T^{2} \)
89 \( 1 - 6985286 T + p^{7} T^{2} \)
97 \( 1 - 200762 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.19924886708937658345058054494, −8.749459003041234493272574292757, −7.84558802713641637664207295412, −6.75944354149565569816490411719, −6.00277912395252041070884980260, −4.68944135974671314254619063678, −4.11899500655301060813880163470, −2.90571910132255091115667925305, −1.18157401308430318190862061395, 0, 1.18157401308430318190862061395, 2.90571910132255091115667925305, 4.11899500655301060813880163470, 4.68944135974671314254619063678, 6.00277912395252041070884980260, 6.75944354149565569816490411719, 7.84558802713641637664207295412, 8.749459003041234493272574292757, 10.19924886708937658345058054494

Graph of the $Z$-function along the critical line