Properties

Label 2-338-1.1-c7-0-48
Degree $2$
Conductor $338$
Sign $1$
Analytic cond. $105.586$
Root an. cond. $10.2755$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 79.2·3-s + 64·4-s + 132.·5-s − 634.·6-s + 1.50e3·7-s − 512·8-s + 4.09e3·9-s − 1.06e3·10-s − 2.92e3·11-s + 5.07e3·12-s − 1.20e4·14-s + 1.05e4·15-s + 4.09e3·16-s − 2.17e4·17-s − 3.27e4·18-s + 5.34e4·19-s + 8.48e3·20-s + 1.19e5·21-s + 2.34e4·22-s − 2.84e4·23-s − 4.05e4·24-s − 6.05e4·25-s + 1.51e5·27-s + 9.65e4·28-s + 1.52e5·29-s − 8.41e4·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.69·3-s + 0.5·4-s + 0.474·5-s − 1.19·6-s + 1.66·7-s − 0.353·8-s + 1.87·9-s − 0.335·10-s − 0.662·11-s + 0.847·12-s − 1.17·14-s + 0.804·15-s + 0.250·16-s − 1.07·17-s − 1.32·18-s + 1.78·19-s + 0.237·20-s + 2.81·21-s + 0.468·22-s − 0.487·23-s − 0.599·24-s − 0.774·25-s + 1.48·27-s + 0.831·28-s + 1.16·29-s − 0.568·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(105.586\)
Root analytic conductor: \(10.2755\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 338,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(4.396782450\)
\(L(\frac12)\) \(\approx\) \(4.396782450\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
13 \( 1 \)
good3 \( 1 - 79.2T + 2.18e3T^{2} \)
5 \( 1 - 132.T + 7.81e4T^{2} \)
7 \( 1 - 1.50e3T + 8.23e5T^{2} \)
11 \( 1 + 2.92e3T + 1.94e7T^{2} \)
17 \( 1 + 2.17e4T + 4.10e8T^{2} \)
19 \( 1 - 5.34e4T + 8.93e8T^{2} \)
23 \( 1 + 2.84e4T + 3.40e9T^{2} \)
29 \( 1 - 1.52e5T + 1.72e10T^{2} \)
31 \( 1 - 8.33e4T + 2.75e10T^{2} \)
37 \( 1 - 1.12e5T + 9.49e10T^{2} \)
41 \( 1 - 1.10e5T + 1.94e11T^{2} \)
43 \( 1 - 1.05e5T + 2.71e11T^{2} \)
47 \( 1 - 4.13e5T + 5.06e11T^{2} \)
53 \( 1 + 8.89e5T + 1.17e12T^{2} \)
59 \( 1 - 2.41e6T + 2.48e12T^{2} \)
61 \( 1 - 2.38e6T + 3.14e12T^{2} \)
67 \( 1 + 3.69e5T + 6.06e12T^{2} \)
71 \( 1 + 3.18e6T + 9.09e12T^{2} \)
73 \( 1 - 5.84e6T + 1.10e13T^{2} \)
79 \( 1 - 1.07e6T + 1.92e13T^{2} \)
83 \( 1 - 6.47e5T + 2.71e13T^{2} \)
89 \( 1 + 1.16e7T + 4.42e13T^{2} \)
97 \( 1 - 6.23e4T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.00420900302895573247433136347, −9.308610118997883025767260406309, −8.266370789128583405676376545125, −8.006791992326456111929166328552, −7.03756303518920195876170155139, −5.37460375742095279129330887643, −4.19496608143432468790937241975, −2.74311444586108485849332207696, −2.05549331540689843672386537320, −1.11169766386835853901130513463, 1.11169766386835853901130513463, 2.05549331540689843672386537320, 2.74311444586108485849332207696, 4.19496608143432468790937241975, 5.37460375742095279129330887643, 7.03756303518920195876170155139, 8.006791992326456111929166328552, 8.266370789128583405676376545125, 9.308610118997883025767260406309, 10.00420900302895573247433136347

Graph of the $Z$-function along the critical line