Properties

Label 2-338-1.1-c3-0-0
Degree $2$
Conductor $338$
Sign $1$
Analytic cond. $19.9426$
Root an. cond. $4.46571$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 1.24·3-s + 4·4-s − 20.5·5-s + 2.49·6-s − 21.2·7-s − 8·8-s − 25.4·9-s + 41.0·10-s − 53.0·11-s − 4.98·12-s + 42.5·14-s + 25.5·15-s + 16·16-s − 69.2·17-s + 50.8·18-s + 46.0·19-s − 82.0·20-s + 26.4·21-s + 106.·22-s − 87.2·23-s + 9.96·24-s + 295.·25-s + 65.3·27-s − 85.0·28-s − 162.·29-s − 51.0·30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.239·3-s + 0.5·4-s − 1.83·5-s + 0.169·6-s − 1.14·7-s − 0.353·8-s − 0.942·9-s + 1.29·10-s − 1.45·11-s − 0.119·12-s + 0.811·14-s + 0.439·15-s + 0.250·16-s − 0.987·17-s + 0.666·18-s + 0.556·19-s − 0.916·20-s + 0.275·21-s + 1.02·22-s − 0.790·23-s + 0.0847·24-s + 2.36·25-s + 0.465·27-s − 0.573·28-s − 1.03·29-s − 0.310·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(19.9426\)
Root analytic conductor: \(4.46571\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 338,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.005400272779\)
\(L(\frac12)\) \(\approx\) \(0.005400272779\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
13 \( 1 \)
good3 \( 1 + 1.24T + 27T^{2} \)
5 \( 1 + 20.5T + 125T^{2} \)
7 \( 1 + 21.2T + 343T^{2} \)
11 \( 1 + 53.0T + 1.33e3T^{2} \)
17 \( 1 + 69.2T + 4.91e3T^{2} \)
19 \( 1 - 46.0T + 6.85e3T^{2} \)
23 \( 1 + 87.2T + 1.21e4T^{2} \)
29 \( 1 + 162.T + 2.43e4T^{2} \)
31 \( 1 + 28.3T + 2.97e4T^{2} \)
37 \( 1 + 111.T + 5.06e4T^{2} \)
41 \( 1 + 84.2T + 6.89e4T^{2} \)
43 \( 1 + 328.T + 7.95e4T^{2} \)
47 \( 1 + 63.2T + 1.03e5T^{2} \)
53 \( 1 - 721.T + 1.48e5T^{2} \)
59 \( 1 + 819.T + 2.05e5T^{2} \)
61 \( 1 + 397.T + 2.26e5T^{2} \)
67 \( 1 - 77.8T + 3.00e5T^{2} \)
71 \( 1 - 721.T + 3.57e5T^{2} \)
73 \( 1 + 57.1T + 3.89e5T^{2} \)
79 \( 1 + 419.T + 4.93e5T^{2} \)
83 \( 1 - 917.T + 5.71e5T^{2} \)
89 \( 1 + 378.T + 7.04e5T^{2} \)
97 \( 1 + 346.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.09824888573068834314053891531, −10.34427401902915872932934933407, −9.101441335462314469931032751667, −8.213217096450312098464020533651, −7.52295273808437852253385750518, −6.52999771447776280798266922222, −5.21900534661863915228072442131, −3.69795549054480763997185745495, −2.75876212911572623472279802795, −0.05115794935971680226565408560, 0.05115794935971680226565408560, 2.75876212911572623472279802795, 3.69795549054480763997185745495, 5.21900534661863915228072442131, 6.52999771447776280798266922222, 7.52295273808437852253385750518, 8.213217096450312098464020533651, 9.101441335462314469931032751667, 10.34427401902915872932934933407, 11.09824888573068834314053891531

Graph of the $Z$-function along the critical line