Properties

Label 2-338-1.1-c1-0-4
Degree $2$
Conductor $338$
Sign $1$
Analytic cond. $2.69894$
Root an. cond. $1.64284$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 4·7-s + 8-s − 3·9-s − 10-s + 4·11-s + 4·14-s + 16-s + 3·17-s − 3·18-s − 20-s + 4·22-s − 4·23-s − 4·25-s + 4·28-s − 29-s + 4·31-s + 32-s + 3·34-s − 4·35-s − 3·36-s + 3·37-s − 40-s − 9·41-s − 8·43-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 1.51·7-s + 0.353·8-s − 9-s − 0.316·10-s + 1.20·11-s + 1.06·14-s + 1/4·16-s + 0.727·17-s − 0.707·18-s − 0.223·20-s + 0.852·22-s − 0.834·23-s − 4/5·25-s + 0.755·28-s − 0.185·29-s + 0.718·31-s + 0.176·32-s + 0.514·34-s − 0.676·35-s − 1/2·36-s + 0.493·37-s − 0.158·40-s − 1.40·41-s − 1.21·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2.69894\)
Root analytic conductor: \(1.64284\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 338,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.086772637\)
\(L(\frac12)\) \(\approx\) \(2.086772637\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
13 \( 1 \)
good3 \( 1 + p T^{2} \)
5 \( 1 + T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 3 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 7 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 11 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.73393752866214395062941923882, −11.07718094423656610545951619270, −9.777318883006220542105164078322, −8.389455460221424173843846489864, −7.911995312311956948638277141106, −6.56150790811441553407226286731, −5.49349708810384813454586687760, −4.50196070453734734936420698072, −3.41530945529539786727500876542, −1.72818916811260562211346322788, 1.72818916811260562211346322788, 3.41530945529539786727500876542, 4.50196070453734734936420698072, 5.49349708810384813454586687760, 6.56150790811441553407226286731, 7.911995312311956948638277141106, 8.389455460221424173843846489864, 9.777318883006220542105164078322, 11.07718094423656610545951619270, 11.73393752866214395062941923882

Graph of the $Z$-function along the critical line