L(s) = 1 | − 2-s + 4-s + 5-s − 4·7-s − 8-s − 3·9-s − 10-s − 4·11-s + 4·14-s + 16-s + 3·17-s + 3·18-s + 20-s + 4·22-s − 4·23-s − 4·25-s − 4·28-s − 29-s − 4·31-s − 32-s − 3·34-s − 4·35-s − 3·36-s − 3·37-s − 40-s + 9·41-s − 8·43-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.447·5-s − 1.51·7-s − 0.353·8-s − 9-s − 0.316·10-s − 1.20·11-s + 1.06·14-s + 1/4·16-s + 0.727·17-s + 0.707·18-s + 0.223·20-s + 0.852·22-s − 0.834·23-s − 4/5·25-s − 0.755·28-s − 0.185·29-s − 0.718·31-s − 0.176·32-s − 0.514·34-s − 0.676·35-s − 1/2·36-s − 0.493·37-s − 0.158·40-s + 1.40·41-s − 1.21·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + p T^{2} \) |
| 5 | \( 1 - T + p T^{2} \) |
| 7 | \( 1 + 4 T + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 - 3 T + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 23 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 + T + p T^{2} \) |
| 31 | \( 1 + 4 T + p T^{2} \) |
| 37 | \( 1 + 3 T + p T^{2} \) |
| 41 | \( 1 - 9 T + p T^{2} \) |
| 43 | \( 1 + 8 T + p T^{2} \) |
| 47 | \( 1 - 8 T + p T^{2} \) |
| 53 | \( 1 + 9 T + p T^{2} \) |
| 59 | \( 1 - 4 T + p T^{2} \) |
| 61 | \( 1 - 7 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 + 11 T + p T^{2} \) |
| 79 | \( 1 + 4 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 + 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81910156745178119694051945037, −10.00265996504824306641857892944, −9.401410722305907822307331017593, −8.328452928021353640485386964193, −7.37729909195759055256870872955, −6.14011100030468550046001424302, −5.53947773651972566043968073030, −3.44953101004354074023186786540, −2.42154497911191564605208260981, 0,
2.42154497911191564605208260981, 3.44953101004354074023186786540, 5.53947773651972566043968073030, 6.14011100030468550046001424302, 7.37729909195759055256870872955, 8.328452928021353640485386964193, 9.401410722305907822307331017593, 10.00265996504824306641857892944, 10.81910156745178119694051945037