Properties

Label 2-3360-840.149-c0-0-1
Degree $2$
Conductor $3360$
Sign $0.997 - 0.0633i$
Analytic cond. $1.67685$
Root an. cond. $1.29493$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 − 0.5i)3-s + i·5-s + (−0.5 − 0.866i)7-s + (0.499 − 0.866i)9-s + (0.866 + 1.5i)11-s + (0.5 + 0.866i)15-s + (−0.866 − 0.499i)21-s − 25-s − 0.999i·27-s + 1.73·29-s + (0.5 + 0.866i)31-s + (1.5 + 0.866i)33-s + (0.866 − 0.5i)35-s + (0.866 + 0.499i)45-s + (−0.499 + 0.866i)49-s + ⋯
L(s)  = 1  + (0.866 − 0.5i)3-s + i·5-s + (−0.5 − 0.866i)7-s + (0.499 − 0.866i)9-s + (0.866 + 1.5i)11-s + (0.5 + 0.866i)15-s + (−0.866 − 0.499i)21-s − 25-s − 0.999i·27-s + 1.73·29-s + (0.5 + 0.866i)31-s + (1.5 + 0.866i)33-s + (0.866 − 0.5i)35-s + (0.866 + 0.499i)45-s + (−0.499 + 0.866i)49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3360\)    =    \(2^{5} \cdot 3 \cdot 5 \cdot 7\)
Sign: $0.997 - 0.0633i$
Analytic conductor: \(1.67685\)
Root analytic conductor: \(1.29493\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3360} (3089, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3360,\ (\ :0),\ 0.997 - 0.0633i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.748664972\)
\(L(\frac12)\) \(\approx\) \(1.748664972\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-0.866 + 0.5i)T \)
5 \( 1 - iT \)
7 \( 1 + (0.5 + 0.866i)T \)
good11 \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \)
13 \( 1 + T^{2} \)
17 \( 1 + (-0.5 + 0.866i)T^{2} \)
19 \( 1 + (0.5 + 0.866i)T^{2} \)
23 \( 1 + (-0.5 - 0.866i)T^{2} \)
29 \( 1 - 1.73T + T^{2} \)
31 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
37 \( 1 + (-0.5 - 0.866i)T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 + T^{2} \)
47 \( 1 + (-0.5 - 0.866i)T^{2} \)
53 \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \)
59 \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \)
61 \( 1 + (0.5 + 0.866i)T^{2} \)
67 \( 1 + (-0.5 + 0.866i)T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + (0.5 - 0.866i)T^{2} \)
79 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
83 \( 1 - iT - T^{2} \)
89 \( 1 + (0.5 + 0.866i)T^{2} \)
97 \( 1 + 1.73iT - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.758118842694130524195283609523, −7.917671374265313854222690991599, −7.16370920828620952449106482398, −6.78305123025947206005173372734, −6.28759656592205210283201034889, −4.71086718737279709973788351415, −3.96524468523768665376397745978, −3.21843212794259725164594858299, −2.36596416648350155111704267601, −1.32718202599917423872583249208, 1.13987495637468826002866689292, 2.45093222429481928638957147857, 3.24870174765165883014359174512, 4.08235948795844103806566990750, 4.86098278934986232450848691431, 5.80366890019084284768266850979, 6.33903092153569038727552529085, 7.56244938574772197254171319680, 8.527385054114554460858742295645, 8.641856035552979822242121488555

Graph of the $Z$-function along the critical line