L(s) = 1 | + (−0.707 + 0.707i)3-s + (−0.866 + 0.5i)5-s + (0.965 − 0.258i)7-s − 1.00i·9-s + (0.258 − 0.965i)15-s + (−0.500 + 0.866i)21-s + (0.965 + 1.67i)23-s + (0.499 − 0.866i)25-s + (0.707 + 0.707i)27-s − 1.73i·29-s + (−0.707 + 0.707i)35-s − i·41-s − 0.517i·43-s + (0.500 + 0.866i)45-s + (0.707 + 1.22i)47-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)3-s + (−0.866 + 0.5i)5-s + (0.965 − 0.258i)7-s − 1.00i·9-s + (0.258 − 0.965i)15-s + (−0.500 + 0.866i)21-s + (0.965 + 1.67i)23-s + (0.499 − 0.866i)25-s + (0.707 + 0.707i)27-s − 1.73i·29-s + (−0.707 + 0.707i)35-s − i·41-s − 0.517i·43-s + (0.500 + 0.866i)45-s + (0.707 + 1.22i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.553 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.553 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9301073578\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9301073578\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (-0.965 + 0.258i)T \) |
good | 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.965 - 1.67i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + 1.73iT - T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + iT - T^{2} \) |
| 43 | \( 1 + 0.517iT - T^{2} \) |
| 47 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-1.67 - 0.965i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - 0.517T + T^{2} \) |
| 89 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.954861630252526144722599692284, −8.077211456871562482145235934627, −7.41818380278400556190591771594, −6.76751668395362576814971885870, −5.71333117411461480449743591469, −5.11883969788006943112800091790, −4.14608791307704292850145181854, −3.77685863384287038622048380194, −2.57072517571473936731330734536, −1.00817362582173333841271347532,
0.827950920659224598987851089116, 1.85402857033447995527481432060, 3.02664281931911211285422845476, 4.31434718663493027268162139050, 4.95290126382460039326441329380, 5.46398902049437037129658451774, 6.66367161891495647736908821457, 7.09871303243200929292689868194, 8.091480608347679610619989437777, 8.372531246827003233452564964769