Properties

Label 2-3360-105.44-c0-0-2
Degree $2$
Conductor $3360$
Sign $-0.553 - 0.832i$
Analytic cond. $1.67685$
Root an. cond. $1.29493$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 0.707i)3-s + (0.866 + 0.5i)5-s + (−0.258 + 0.965i)7-s − 1.00i·9-s + (−0.965 + 0.258i)15-s + (−0.500 − 0.866i)21-s + (−0.258 + 0.448i)23-s + (0.499 + 0.866i)25-s + (0.707 + 0.707i)27-s + 1.73i·29-s + (−0.707 + 0.707i)35-s i·41-s + 1.93i·43-s + (0.500 − 0.866i)45-s + (0.707 − 1.22i)47-s + ⋯
L(s)  = 1  + (−0.707 + 0.707i)3-s + (0.866 + 0.5i)5-s + (−0.258 + 0.965i)7-s − 1.00i·9-s + (−0.965 + 0.258i)15-s + (−0.500 − 0.866i)21-s + (−0.258 + 0.448i)23-s + (0.499 + 0.866i)25-s + (0.707 + 0.707i)27-s + 1.73i·29-s + (−0.707 + 0.707i)35-s i·41-s + 1.93i·43-s + (0.500 − 0.866i)45-s + (0.707 − 1.22i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.553 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.553 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3360\)    =    \(2^{5} \cdot 3 \cdot 5 \cdot 7\)
Sign: $-0.553 - 0.832i$
Analytic conductor: \(1.67685\)
Root analytic conductor: \(1.29493\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3360} (1409, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3360,\ (\ :0),\ -0.553 - 0.832i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9982183777\)
\(L(\frac12)\) \(\approx\) \(0.9982183777\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.707 - 0.707i)T \)
5 \( 1 + (-0.866 - 0.5i)T \)
7 \( 1 + (0.258 - 0.965i)T \)
good11 \( 1 + (0.5 - 0.866i)T^{2} \)
13 \( 1 - T^{2} \)
17 \( 1 + (-0.5 + 0.866i)T^{2} \)
19 \( 1 + (-0.5 - 0.866i)T^{2} \)
23 \( 1 + (0.258 - 0.448i)T + (-0.5 - 0.866i)T^{2} \)
29 \( 1 - 1.73iT - T^{2} \)
31 \( 1 + (-0.5 + 0.866i)T^{2} \)
37 \( 1 + (0.5 + 0.866i)T^{2} \)
41 \( 1 + iT - T^{2} \)
43 \( 1 - 1.93iT - T^{2} \)
47 \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \)
53 \( 1 + (-0.5 + 0.866i)T^{2} \)
59 \( 1 + (0.5 - 0.866i)T^{2} \)
61 \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \)
67 \( 1 + (-0.448 + 0.258i)T + (0.5 - 0.866i)T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + (0.5 - 0.866i)T^{2} \)
79 \( 1 + (-0.5 - 0.866i)T^{2} \)
83 \( 1 + 1.93T + T^{2} \)
89 \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.049274208833948869368768043216, −8.718557589134349913900392480390, −7.33844053686220513189678437076, −6.63627232314903448263487239349, −5.84827964202340353702430319941, −5.48320554802720451482153644655, −4.62699772824695928211193070673, −3.47535536259215937973744419663, −2.75654204861734006317750615036, −1.56593148908373671913782018166, 0.66090180338384530802245674140, 1.71639902272188519168533392137, 2.67187324296023750416213216565, 4.08509022018637603447571705942, 4.77891449690114729649305635746, 5.69967976257812079257311897387, 6.27068032697957745436120940335, 6.93037253420302727156015372659, 7.74530421139047503704348013018, 8.381060593543198207315435850223

Graph of the $Z$-function along the critical line