L(s) = 1 | + (−4.5 + 7.79i)3-s + (37.7 + 65.3i)5-s + (−99.4 − 83.1i)7-s + (−40.5 − 70.1i)9-s + (−74.7 + 129. i)11-s + 349.·13-s − 679.·15-s + (574. − 995. i)17-s + (−1.39e3 − 2.42e3i)19-s + (1.09e3 − 401. i)21-s + (906. + 1.57e3i)23-s + (−1.28e3 + 2.22e3i)25-s + 729·27-s − 759.·29-s + (4.51e3 − 7.82e3i)31-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + (0.675 + 1.16i)5-s + (−0.767 − 0.641i)7-s + (−0.166 − 0.288i)9-s + (−0.186 + 0.322i)11-s + 0.573·13-s − 0.779·15-s + (0.482 − 0.835i)17-s + (−0.888 − 1.53i)19-s + (0.542 − 0.198i)21-s + (0.357 + 0.619i)23-s + (−0.411 + 0.713i)25-s + 0.192·27-s − 0.167·29-s + (0.843 − 1.46i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.972 + 0.233i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.972 + 0.233i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.626331584\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.626331584\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (4.5 - 7.79i)T \) |
| 7 | \( 1 + (99.4 + 83.1i)T \) |
good | 5 | \( 1 + (-37.7 - 65.3i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (74.7 - 129. i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 - 349.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-574. + 995. i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (1.39e3 + 2.42e3i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-906. - 1.57e3i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 + 759.T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-4.51e3 + 7.82e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (3.89e3 + 6.75e3i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 - 7.64e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.21e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-1.22e4 - 2.13e4i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (6.79e3 - 1.17e4i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.31e4 - 2.28e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (1.76e4 + 3.05e4i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-2.71e4 + 4.70e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 - 7.01e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-2.22e4 + 3.85e4i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-3.08e4 - 5.33e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 - 8.71e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (4.92e4 + 8.53e4i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 - 3.23e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.80725770303247811433520051120, −9.769250592106327629818084999368, −9.265114367739517182586482014100, −7.58876696990920585690303417496, −6.69144271671169524909719445782, −6.00202521184284680332592697544, −4.64945514098815285281246171749, −3.39954939959838367557642014922, −2.45068996262327408558974267907, −0.52552397027707958956902202247,
0.974320334314310470347957917689, 2.00646339001160904213629184629, 3.55264311809499037253193918691, 5.08141941541357539426494216769, 5.90946677805727893461049424890, 6.58710765598126271228871293941, 8.328901825825577667572612221965, 8.619437599632245049616289137901, 9.855684380858355099784442124078, 10.62218332178224995604072852903