Properties

Label 2-336-7.2-c5-0-6
Degree $2$
Conductor $336$
Sign $-0.702 + 0.711i$
Analytic cond. $53.8889$
Root an. cond. $7.34091$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4.5 + 7.79i)3-s + (−32.7 + 56.7i)5-s + (−40.6 + 123. i)7-s + (−40.5 + 70.1i)9-s + (−122. − 212. i)11-s + 434.·13-s − 590.·15-s + (551. + 954. i)17-s + (−1.43e3 + 2.49e3i)19-s + (−1.14e3 + 237. i)21-s + (−2.11e3 + 3.66e3i)23-s + (−587. − 1.01e3i)25-s − 729·27-s + 4.96e3·29-s + (−4.39e3 − 7.60e3i)31-s + ⋯
L(s)  = 1  + (0.288 + 0.499i)3-s + (−0.586 + 1.01i)5-s + (−0.313 + 0.949i)7-s + (−0.166 + 0.288i)9-s + (−0.305 − 0.529i)11-s + 0.713·13-s − 0.677·15-s + (0.462 + 0.801i)17-s + (−0.914 + 1.58i)19-s + (−0.565 + 0.117i)21-s + (−0.833 + 1.44i)23-s + (−0.187 − 0.325i)25-s − 0.192·27-s + 1.09·29-s + (−0.820 − 1.42i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.702 + 0.711i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.702 + 0.711i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336\)    =    \(2^{4} \cdot 3 \cdot 7\)
Sign: $-0.702 + 0.711i$
Analytic conductor: \(53.8889\)
Root analytic conductor: \(7.34091\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{336} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 336,\ (\ :5/2),\ -0.702 + 0.711i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.8987096871\)
\(L(\frac12)\) \(\approx\) \(0.8987096871\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-4.5 - 7.79i)T \)
7 \( 1 + (40.6 - 123. i)T \)
good5 \( 1 + (32.7 - 56.7i)T + (-1.56e3 - 2.70e3i)T^{2} \)
11 \( 1 + (122. + 212. i)T + (-8.05e4 + 1.39e5i)T^{2} \)
13 \( 1 - 434.T + 3.71e5T^{2} \)
17 \( 1 + (-551. - 954. i)T + (-7.09e5 + 1.22e6i)T^{2} \)
19 \( 1 + (1.43e3 - 2.49e3i)T + (-1.23e6 - 2.14e6i)T^{2} \)
23 \( 1 + (2.11e3 - 3.66e3i)T + (-3.21e6 - 5.57e6i)T^{2} \)
29 \( 1 - 4.96e3T + 2.05e7T^{2} \)
31 \( 1 + (4.39e3 + 7.60e3i)T + (-1.43e7 + 2.47e7i)T^{2} \)
37 \( 1 + (-1.22e3 + 2.11e3i)T + (-3.46e7 - 6.00e7i)T^{2} \)
41 \( 1 + 3.66e3T + 1.15e8T^{2} \)
43 \( 1 - 7.19e3T + 1.47e8T^{2} \)
47 \( 1 + (-1.63e3 + 2.83e3i)T + (-1.14e8 - 1.98e8i)T^{2} \)
53 \( 1 + (-1.51e3 - 2.61e3i)T + (-2.09e8 + 3.62e8i)T^{2} \)
59 \( 1 + (2.57e4 + 4.45e4i)T + (-3.57e8 + 6.19e8i)T^{2} \)
61 \( 1 + (-6.65e3 + 1.15e4i)T + (-4.22e8 - 7.31e8i)T^{2} \)
67 \( 1 + (-1.54e4 - 2.67e4i)T + (-6.75e8 + 1.16e9i)T^{2} \)
71 \( 1 - 4.18e4T + 1.80e9T^{2} \)
73 \( 1 + (1.73e4 + 2.99e4i)T + (-1.03e9 + 1.79e9i)T^{2} \)
79 \( 1 + (-3.87e4 + 6.71e4i)T + (-1.53e9 - 2.66e9i)T^{2} \)
83 \( 1 + 1.00e5T + 3.93e9T^{2} \)
89 \( 1 + (2.03e4 - 3.53e4i)T + (-2.79e9 - 4.83e9i)T^{2} \)
97 \( 1 - 1.40e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.17505037092717498926217695595, −10.43440422303049655290567575630, −9.531390322965518325499882400064, −8.354231335894596811151225647118, −7.79573323556952346675004793094, −6.27022547123651092358562959191, −5.66524850394053160899497326323, −3.87591368335653290594814474029, −3.30871963207071175035395504726, −1.98325521235115412132231605525, 0.24671663315313065664394785876, 1.10015129013693860208927195640, 2.72119513200681948576377328553, 4.13742844870521718234176784084, 4.88642637732233273015382290831, 6.49971569999435894891546937498, 7.28171789407181508001249805906, 8.326608439416653128220680522322, 8.938535003942496739267139182125, 10.17280402876628905283259666346

Graph of the $Z$-function along the critical line