L(s) = 1 | + (4.5 + 7.79i)3-s + (−32.7 + 56.7i)5-s + (−40.6 + 123. i)7-s + (−40.5 + 70.1i)9-s + (−122. − 212. i)11-s + 434.·13-s − 590.·15-s + (551. + 954. i)17-s + (−1.43e3 + 2.49e3i)19-s + (−1.14e3 + 237. i)21-s + (−2.11e3 + 3.66e3i)23-s + (−587. − 1.01e3i)25-s − 729·27-s + 4.96e3·29-s + (−4.39e3 − 7.60e3i)31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (−0.586 + 1.01i)5-s + (−0.313 + 0.949i)7-s + (−0.166 + 0.288i)9-s + (−0.305 − 0.529i)11-s + 0.713·13-s − 0.677·15-s + (0.462 + 0.801i)17-s + (−0.914 + 1.58i)19-s + (−0.565 + 0.117i)21-s + (−0.833 + 1.44i)23-s + (−0.187 − 0.325i)25-s − 0.192·27-s + 1.09·29-s + (−0.820 − 1.42i)31-s + ⋯ |
Λ(s)=(=(336s/2ΓC(s)L(s)(−0.702+0.711i)Λ(6−s)
Λ(s)=(=(336s/2ΓC(s+5/2)L(s)(−0.702+0.711i)Λ(1−s)
Degree: |
2 |
Conductor: |
336
= 24⋅3⋅7
|
Sign: |
−0.702+0.711i
|
Analytic conductor: |
53.8889 |
Root analytic conductor: |
7.34091 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ336(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 336, ( :5/2), −0.702+0.711i)
|
Particular Values
L(3) |
≈ |
0.8987096871 |
L(21) |
≈ |
0.8987096871 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−4.5−7.79i)T |
| 7 | 1+(40.6−123.i)T |
good | 5 | 1+(32.7−56.7i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(122.+212.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1−434.T+3.71e5T2 |
| 17 | 1+(−551.−954.i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(1.43e3−2.49e3i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(2.11e3−3.66e3i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1−4.96e3T+2.05e7T2 |
| 31 | 1+(4.39e3+7.60e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(−1.22e3+2.11e3i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1+3.66e3T+1.15e8T2 |
| 43 | 1−7.19e3T+1.47e8T2 |
| 47 | 1+(−1.63e3+2.83e3i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(−1.51e3−2.61e3i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(2.57e4+4.45e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(−6.65e3+1.15e4i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(−1.54e4−2.67e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1−4.18e4T+1.80e9T2 |
| 73 | 1+(1.73e4+2.99e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(−3.87e4+6.71e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1+1.00e5T+3.93e9T2 |
| 89 | 1+(2.03e4−3.53e4i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1−1.40e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.17505037092717498926217695595, −10.43440422303049655290567575630, −9.531390322965518325499882400064, −8.354231335894596811151225647118, −7.79573323556952346675004793094, −6.27022547123651092358562959191, −5.66524850394053160899497326323, −3.87591368335653290594814474029, −3.30871963207071175035395504726, −1.98325521235115412132231605525,
0.24671663315313065664394785876, 1.10015129013693860208927195640, 2.72119513200681948576377328553, 4.13742844870521718234176784084, 4.88642637732233273015382290831, 6.49971569999435894891546937498, 7.28171789407181508001249805906, 8.326608439416653128220680522322, 8.938535003942496739267139182125, 10.17280402876628905283259666346