L(s) = 1 | + (4.5 + 7.79i)3-s + (−11.8 + 20.5i)5-s + (−30.6 + 125. i)7-s + (−40.5 + 70.1i)9-s + (232. + 403. i)11-s − 1.01e3·13-s − 213.·15-s + (−280. − 486. i)17-s + (−693. + 1.20e3i)19-s + (−1.11e3 + 327. i)21-s + (2.05e3 − 3.56e3i)23-s + (1.28e3 + 2.21e3i)25-s − 729·27-s − 2.38e3·29-s + (1.47e3 + 2.55e3i)31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (−0.212 + 0.367i)5-s + (−0.236 + 0.971i)7-s + (−0.166 + 0.288i)9-s + (0.580 + 1.00i)11-s − 1.67·13-s − 0.245·15-s + (−0.235 − 0.408i)17-s + (−0.440 + 0.763i)19-s + (−0.554 + 0.162i)21-s + (0.810 − 1.40i)23-s + (0.409 + 0.709i)25-s − 0.192·27-s − 0.525·29-s + (0.275 + 0.477i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.643 + 0.765i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.643 + 0.765i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.4975474005\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4975474005\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-4.5 - 7.79i)T \) |
| 7 | \( 1 + (30.6 - 125. i)T \) |
good | 5 | \( 1 + (11.8 - 20.5i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-232. - 403. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 + 1.01e3T + 3.71e5T^{2} \) |
| 17 | \( 1 + (280. + 486. i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (693. - 1.20e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-2.05e3 + 3.56e3i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 + 2.38e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-1.47e3 - 2.55e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-4.95e3 + 8.58e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 + 4.47e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 5.18e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (1.56e3 - 2.70e3i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (570. + 988. i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-1.37e4 - 2.38e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-1.05e4 + 1.82e4i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (2.77e4 + 4.81e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 - 6.07e3T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-8.38e3 - 1.45e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (2.42e3 - 4.19e3i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 + 6.01e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-3.12e4 + 5.41e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 + 6.36e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.31380262956587091062706087629, −10.20373387846053485779911258342, −9.484434369130885819835879111270, −8.717901393692023178442625359039, −7.46609672419689305340875415716, −6.63157491942166852027754189527, −5.24115913523315616862724932723, −4.38067962247353719671097656997, −2.96865418977090041309928911677, −2.07499459641304160013335754294,
0.12705840911659962893721265145, 1.18554491418263021655227918587, 2.74058972691527770355361610593, 3.92784768087516316022765221630, 5.05093514403896208648678679816, 6.47445657731515549575054633156, 7.24876019980684960179307935100, 8.163126898505188046076987800341, 9.157188262082962667573157969372, 10.03790730907623829885694420740