L(s) = 1 | + (−4.5 − 7.79i)3-s + (37.7 − 65.3i)5-s + (−99.4 + 83.1i)7-s + (−40.5 + 70.1i)9-s + (−74.7 − 129. i)11-s + 349.·13-s − 679.·15-s + (574. + 995. i)17-s + (−1.39e3 + 2.42e3i)19-s + (1.09e3 + 401. i)21-s + (906. − 1.57e3i)23-s + (−1.28e3 − 2.22e3i)25-s + 729·27-s − 759.·29-s + (4.51e3 + 7.82e3i)31-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (0.675 − 1.16i)5-s + (−0.767 + 0.641i)7-s + (−0.166 + 0.288i)9-s + (−0.186 − 0.322i)11-s + 0.573·13-s − 0.779·15-s + (0.482 + 0.835i)17-s + (−0.888 + 1.53i)19-s + (0.542 + 0.198i)21-s + (0.357 − 0.619i)23-s + (−0.411 − 0.713i)25-s + 0.192·27-s − 0.167·29-s + (0.843 + 1.46i)31-s + ⋯ |
Λ(s)=(=(336s/2ΓC(s)L(s)(0.972−0.233i)Λ(6−s)
Λ(s)=(=(336s/2ΓC(s+5/2)L(s)(0.972−0.233i)Λ(1−s)
Degree: |
2 |
Conductor: |
336
= 24⋅3⋅7
|
Sign: |
0.972−0.233i
|
Analytic conductor: |
53.8889 |
Root analytic conductor: |
7.34091 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ336(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 336, ( :5/2), 0.972−0.233i)
|
Particular Values
L(3) |
≈ |
1.626331584 |
L(21) |
≈ |
1.626331584 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(4.5+7.79i)T |
| 7 | 1+(99.4−83.1i)T |
good | 5 | 1+(−37.7+65.3i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(74.7+129.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1−349.T+3.71e5T2 |
| 17 | 1+(−574.−995.i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(1.39e3−2.42e3i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(−906.+1.57e3i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1+759.T+2.05e7T2 |
| 31 | 1+(−4.51e3−7.82e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(3.89e3−6.75e3i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1−7.64e3T+1.15e8T2 |
| 43 | 1+1.21e4T+1.47e8T2 |
| 47 | 1+(−1.22e4+2.13e4i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(6.79e3+1.17e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(1.31e4+2.28e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(1.76e4−3.05e4i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(−2.71e4−4.70e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1−7.01e4T+1.80e9T2 |
| 73 | 1+(−2.22e4−3.85e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(−3.08e4+5.33e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1−8.71e4T+3.93e9T2 |
| 89 | 1+(4.92e4−8.53e4i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1−3.23e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.62218332178224995604072852903, −9.855684380858355099784442124078, −8.619437599632245049616289137901, −8.328901825825577667572612221965, −6.58710765598126271228871293941, −5.90946677805727893461049424890, −5.08141941541357539426494216769, −3.55264311809499037253193918691, −2.00646339001160904213629184629, −0.974320334314310470347957917689,
0.52552397027707958956902202247, 2.45068996262327408558974267907, 3.39954939959838367557642014922, 4.64945514098815285281246171749, 6.00202521184284680332592697544, 6.69144271671169524909719445782, 7.58876696990920585690303417496, 9.265114367739517182586482014100, 9.769250592106327629818084999368, 10.80725770303247811433520051120