# Properties

 Label 2-336-21.5-c3-0-34 Degree $2$ Conductor $336$ Sign $-0.425 + 0.905i$ Analytic cond. $19.8246$ Root an. cond. $4.45248$ Motivic weight $3$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (−5.19 − 0.00519i)3-s + (8.05 − 13.9i)5-s + (5.67 − 17.6i)7-s + (26.9 + 0.0539i)9-s + (30.8 − 17.7i)11-s + 7.40i·13-s + (−41.9 + 72.4i)15-s + (14.4 + 25.0i)17-s + (−30.4 − 17.5i)19-s + (−29.6 + 91.5i)21-s + (48.0 + 27.7i)23-s + (−67.3 − 116. i)25-s + (−140. − 0.420i)27-s − 68.1i·29-s + (154. − 89.3i)31-s + ⋯
 L(s)  = 1 + (−0.999 − 0.000999i)3-s + (0.720 − 1.24i)5-s + (0.306 − 0.951i)7-s + (0.999 + 0.00199i)9-s + (0.845 − 0.487i)11-s + 0.158i·13-s + (−0.722 + 1.24i)15-s + (0.206 + 0.357i)17-s + (−0.367 − 0.212i)19-s + (−0.307 + 0.951i)21-s + (0.435 + 0.251i)23-s + (−0.539 − 0.933i)25-s + (−0.999 − 0.00299i)27-s − 0.436i·29-s + (0.896 − 0.517i)31-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.425 + 0.905i)\, \overline{\Lambda}(4-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.425 + 0.905i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$336$$    =    $$2^{4} \cdot 3 \cdot 7$$ Sign: $-0.425 + 0.905i$ Analytic conductor: $$19.8246$$ Root analytic conductor: $$4.45248$$ Motivic weight: $$3$$ Rational: no Arithmetic: yes Character: $\chi_{336} (257, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 336,\ (\ :3/2),\ -0.425 + 0.905i)$$

## Particular Values

 $$L(2)$$ $$\approx$$ $$1.517433305$$ $$L(\frac12)$$ $$\approx$$ $$1.517433305$$ $$L(\frac{5}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
3 $$1 + (5.19 + 0.00519i)T$$
7 $$1 + (-5.67 + 17.6i)T$$
good5 $$1 + (-8.05 + 13.9i)T + (-62.5 - 108. i)T^{2}$$
11 $$1 + (-30.8 + 17.7i)T + (665.5 - 1.15e3i)T^{2}$$
13 $$1 - 7.40iT - 2.19e3T^{2}$$
17 $$1 + (-14.4 - 25.0i)T + (-2.45e3 + 4.25e3i)T^{2}$$
19 $$1 + (30.4 + 17.5i)T + (3.42e3 + 5.94e3i)T^{2}$$
23 $$1 + (-48.0 - 27.7i)T + (6.08e3 + 1.05e4i)T^{2}$$
29 $$1 + 68.1iT - 2.43e4T^{2}$$
31 $$1 + (-154. + 89.3i)T + (1.48e4 - 2.57e4i)T^{2}$$
37 $$1 + (-116. + 202. i)T + (-2.53e4 - 4.38e4i)T^{2}$$
41 $$1 + 370.T + 6.89e4T^{2}$$
43 $$1 - 187.T + 7.95e4T^{2}$$
47 $$1 + (87.3 - 151. i)T + (-5.19e4 - 8.99e4i)T^{2}$$
53 $$1 + (-235. + 136. i)T + (7.44e4 - 1.28e5i)T^{2}$$
59 $$1 + (48.4 + 83.8i)T + (-1.02e5 + 1.77e5i)T^{2}$$
61 $$1 + (333. + 192. i)T + (1.13e5 + 1.96e5i)T^{2}$$
67 $$1 + (509. + 881. i)T + (-1.50e5 + 2.60e5i)T^{2}$$
71 $$1 - 125. iT - 3.57e5T^{2}$$
73 $$1 + (-195. + 112. i)T + (1.94e5 - 3.36e5i)T^{2}$$
79 $$1 + (532. - 921. i)T + (-2.46e5 - 4.26e5i)T^{2}$$
83 $$1 + 601.T + 5.71e5T^{2}$$
89 $$1 + (752. - 1.30e3i)T + (-3.52e5 - 6.10e5i)T^{2}$$
97 $$1 + 327. iT - 9.12e5T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−10.90112835966695136273192027291, −9.929070549166978075731359571906, −9.124849418860039668647028430491, −7.990358517907219073881712987840, −6.73689286823398089586494070160, −5.85437051816526314479805248481, −4.84206289273925582708816153875, −4.01408844657321335281585860177, −1.56433660804343454577520562739, −0.67290571318109831008641384082, 1.59201948696641822343299596588, 2.92059807705488800198905509585, 4.59848869606365800111307149004, 5.73182032623686577954377575680, 6.47944826828593609431858643502, 7.22766667499837987216089684769, 8.750370127460112968721364728385, 9.891891692609708537911578478133, 10.45805620955342251187035548336, 11.50687321005123966814204461487