Properties

Label 2-336-21.17-c3-0-13
Degree $2$
Conductor $336$
Sign $-0.425 - 0.905i$
Analytic cond. $19.8246$
Root an. cond. $4.45248$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−5.19 + 0.00519i)3-s + (8.05 + 13.9i)5-s + (5.67 + 17.6i)7-s + (26.9 − 0.0539i)9-s + (30.8 + 17.7i)11-s − 7.40i·13-s + (−41.9 − 72.4i)15-s + (14.4 − 25.0i)17-s + (−30.4 + 17.5i)19-s + (−29.6 − 91.5i)21-s + (48.0 − 27.7i)23-s + (−67.3 + 116. i)25-s + (−140. + 0.420i)27-s + 68.1i·29-s + (154. + 89.3i)31-s + ⋯
L(s)  = 1  + (−0.999 + 0.000999i)3-s + (0.720 + 1.24i)5-s + (0.306 + 0.951i)7-s + (0.999 − 0.00199i)9-s + (0.845 + 0.487i)11-s − 0.158i·13-s + (−0.722 − 1.24i)15-s + (0.206 − 0.357i)17-s + (−0.367 + 0.212i)19-s + (−0.307 − 0.951i)21-s + (0.435 − 0.251i)23-s + (−0.539 + 0.933i)25-s + (−0.999 + 0.00299i)27-s + 0.436i·29-s + (0.896 + 0.517i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.425 - 0.905i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.425 - 0.905i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336\)    =    \(2^{4} \cdot 3 \cdot 7\)
Sign: $-0.425 - 0.905i$
Analytic conductor: \(19.8246\)
Root analytic conductor: \(4.45248\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{336} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 336,\ (\ :3/2),\ -0.425 - 0.905i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.517433305\)
\(L(\frac12)\) \(\approx\) \(1.517433305\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (5.19 - 0.00519i)T \)
7 \( 1 + (-5.67 - 17.6i)T \)
good5 \( 1 + (-8.05 - 13.9i)T + (-62.5 + 108. i)T^{2} \)
11 \( 1 + (-30.8 - 17.7i)T + (665.5 + 1.15e3i)T^{2} \)
13 \( 1 + 7.40iT - 2.19e3T^{2} \)
17 \( 1 + (-14.4 + 25.0i)T + (-2.45e3 - 4.25e3i)T^{2} \)
19 \( 1 + (30.4 - 17.5i)T + (3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (-48.0 + 27.7i)T + (6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 - 68.1iT - 2.43e4T^{2} \)
31 \( 1 + (-154. - 89.3i)T + (1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (-116. - 202. i)T + (-2.53e4 + 4.38e4i)T^{2} \)
41 \( 1 + 370.T + 6.89e4T^{2} \)
43 \( 1 - 187.T + 7.95e4T^{2} \)
47 \( 1 + (87.3 + 151. i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (-235. - 136. i)T + (7.44e4 + 1.28e5i)T^{2} \)
59 \( 1 + (48.4 - 83.8i)T + (-1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (333. - 192. i)T + (1.13e5 - 1.96e5i)T^{2} \)
67 \( 1 + (509. - 881. i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 + 125. iT - 3.57e5T^{2} \)
73 \( 1 + (-195. - 112. i)T + (1.94e5 + 3.36e5i)T^{2} \)
79 \( 1 + (532. + 921. i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 + 601.T + 5.71e5T^{2} \)
89 \( 1 + (752. + 1.30e3i)T + (-3.52e5 + 6.10e5i)T^{2} \)
97 \( 1 - 327. iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.50687321005123966814204461487, −10.45805620955342251187035548336, −9.891891692609708537911578478133, −8.750370127460112968721364728385, −7.22766667499837987216089684769, −6.47944826828593609431858643502, −5.73182032623686577954377575680, −4.59848869606365800111307149004, −2.92059807705488800198905509585, −1.59201948696641822343299596588, 0.67290571318109831008641384082, 1.56433660804343454577520562739, 4.01408844657321335281585860177, 4.84206289273925582708816153875, 5.85437051816526314479805248481, 6.73689286823398089586494070160, 7.990358517907219073881712987840, 9.124849418860039668647028430491, 9.929070549166978075731359571906, 10.90112835966695136273192027291

Graph of the $Z$-function along the critical line