Properties

Label 2-336-12.11-c3-0-17
Degree $2$
Conductor $336$
Sign $0.911 - 0.410i$
Analytic cond. $19.8246$
Root an. cond. $4.45248$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.03 + 4.21i)3-s + 3.22i·5-s − 7i·7-s + (−8.57 − 25.6i)9-s + 9.66·11-s + 34.8·13-s + (−13.5 − 9.78i)15-s − 129. i·17-s + 67.0i·19-s + (29.5 + 21.2i)21-s − 15.6·23-s + 114.·25-s + (133. + 41.5i)27-s − 87.6i·29-s + 143. i·31-s + ⋯
L(s)  = 1  + (−0.584 + 0.811i)3-s + 0.288i·5-s − 0.377i·7-s + (−0.317 − 0.948i)9-s + 0.264·11-s + 0.743·13-s + (−0.234 − 0.168i)15-s − 1.84i·17-s + 0.809i·19-s + (0.306 + 0.220i)21-s − 0.141·23-s + 0.916·25-s + (0.955 + 0.296i)27-s − 0.561i·29-s + 0.831i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.911 - 0.410i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.911 - 0.410i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336\)    =    \(2^{4} \cdot 3 \cdot 7\)
Sign: $0.911 - 0.410i$
Analytic conductor: \(19.8246\)
Root analytic conductor: \(4.45248\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{336} (239, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 336,\ (\ :3/2),\ 0.911 - 0.410i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.509259626\)
\(L(\frac12)\) \(\approx\) \(1.509259626\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (3.03 - 4.21i)T \)
7 \( 1 + 7iT \)
good5 \( 1 - 3.22iT - 125T^{2} \)
11 \( 1 - 9.66T + 1.33e3T^{2} \)
13 \( 1 - 34.8T + 2.19e3T^{2} \)
17 \( 1 + 129. iT - 4.91e3T^{2} \)
19 \( 1 - 67.0iT - 6.85e3T^{2} \)
23 \( 1 + 15.6T + 1.21e4T^{2} \)
29 \( 1 + 87.6iT - 2.43e4T^{2} \)
31 \( 1 - 143. iT - 2.97e4T^{2} \)
37 \( 1 - 104.T + 5.06e4T^{2} \)
41 \( 1 - 257. iT - 6.89e4T^{2} \)
43 \( 1 - 267. iT - 7.95e4T^{2} \)
47 \( 1 - 430.T + 1.03e5T^{2} \)
53 \( 1 + 121. iT - 1.48e5T^{2} \)
59 \( 1 - 861.T + 2.05e5T^{2} \)
61 \( 1 - 502.T + 2.26e5T^{2} \)
67 \( 1 + 162. iT - 3.00e5T^{2} \)
71 \( 1 + 616.T + 3.57e5T^{2} \)
73 \( 1 - 719.T + 3.89e5T^{2} \)
79 \( 1 - 250. iT - 4.93e5T^{2} \)
83 \( 1 + 376.T + 5.71e5T^{2} \)
89 \( 1 + 870. iT - 7.04e5T^{2} \)
97 \( 1 - 44.3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.22498927193004532883047922589, −10.26314615440981934656465729712, −9.546042997529273748739909052959, −8.535499461708363239343554644854, −7.18997260176997786326446607705, −6.26450868742137466049691579690, −5.16827104008742931529408840272, −4.12590769875754617905880618419, −3.00190144109218809359344483540, −0.840209307582754356966457892149, 0.930263449900895281392887587638, 2.22080635324397030991465986052, 3.95716424013047901071593748684, 5.35581039763763366329298744489, 6.17468219723831695102298033275, 7.09543358522403159762750876939, 8.306670022498282970162008929633, 8.916829535372927816848490768595, 10.42340383678858418722529756995, 11.11546124584573641304446164091

Graph of the $Z$-function along the critical line