Properties

Label 2-336-1.1-c5-0-22
Degree $2$
Conductor $336$
Sign $-1$
Analytic cond. $53.8889$
Root an. cond. $7.34091$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s + 26·5-s + 49·7-s + 81·9-s − 664·11-s + 318·13-s − 234·15-s + 1.58e3·17-s − 236·19-s − 441·21-s − 2.21e3·23-s − 2.44e3·25-s − 729·27-s − 4.95e3·29-s + 7.12e3·31-s + 5.97e3·33-s + 1.27e3·35-s + 4.35e3·37-s − 2.86e3·39-s + 1.05e4·41-s + 8.45e3·43-s + 2.10e3·45-s − 5.35e3·47-s + 2.40e3·49-s − 1.42e4·51-s − 3.33e4·53-s − 1.72e4·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.465·5-s + 0.377·7-s + 1/3·9-s − 1.65·11-s + 0.521·13-s − 0.268·15-s + 1.32·17-s − 0.149·19-s − 0.218·21-s − 0.871·23-s − 0.783·25-s − 0.192·27-s − 1.09·29-s + 1.33·31-s + 0.955·33-s + 0.175·35-s + 0.523·37-s − 0.301·39-s + 0.979·41-s + 0.697·43-s + 0.155·45-s − 0.353·47-s + 1/7·49-s − 0.766·51-s − 1.63·53-s − 0.769·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336\)    =    \(2^{4} \cdot 3 \cdot 7\)
Sign: $-1$
Analytic conductor: \(53.8889\)
Root analytic conductor: \(7.34091\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 336,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p^{2} T \)
7 \( 1 - p^{2} T \)
good5 \( 1 - 26 T + p^{5} T^{2} \)
11 \( 1 + 664 T + p^{5} T^{2} \)
13 \( 1 - 318 T + p^{5} T^{2} \)
17 \( 1 - 1582 T + p^{5} T^{2} \)
19 \( 1 + 236 T + p^{5} T^{2} \)
23 \( 1 + 2212 T + p^{5} T^{2} \)
29 \( 1 + 4954 T + p^{5} T^{2} \)
31 \( 1 - 7128 T + p^{5} T^{2} \)
37 \( 1 - 4358 T + p^{5} T^{2} \)
41 \( 1 - 10542 T + p^{5} T^{2} \)
43 \( 1 - 8452 T + p^{5} T^{2} \)
47 \( 1 + 5352 T + p^{5} T^{2} \)
53 \( 1 + 33354 T + p^{5} T^{2} \)
59 \( 1 - 15436 T + p^{5} T^{2} \)
61 \( 1 + 36762 T + p^{5} T^{2} \)
67 \( 1 + 40972 T + p^{5} T^{2} \)
71 \( 1 - 9092 T + p^{5} T^{2} \)
73 \( 1 + 73454 T + p^{5} T^{2} \)
79 \( 1 + 89400 T + p^{5} T^{2} \)
83 \( 1 - 6428 T + p^{5} T^{2} \)
89 \( 1 + 122658 T + p^{5} T^{2} \)
97 \( 1 - 21370 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.30897399029227035244068700272, −9.595064828236385494532302376364, −8.126188003395187090778589637598, −7.56513965107433831794246185639, −6.01203705959371648391091733460, −5.52283042850781084261895152055, −4.32673120490332448328288671949, −2.80209931397049631438706348526, −1.46522290721873986289364986319, 0, 1.46522290721873986289364986319, 2.80209931397049631438706348526, 4.32673120490332448328288671949, 5.52283042850781084261895152055, 6.01203705959371648391091733460, 7.56513965107433831794246185639, 8.126188003395187090778589637598, 9.595064828236385494532302376364, 10.30897399029227035244068700272

Graph of the $Z$-function along the critical line