Properties

Label 2-336-1.1-c1-0-3
Degree $2$
Conductor $336$
Sign $1$
Analytic cond. $2.68297$
Root an. cond. $1.63797$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s − 7-s + 9-s + 6·13-s + 2·15-s − 2·17-s − 4·19-s − 21-s + 4·23-s − 25-s + 27-s − 10·29-s + 8·31-s − 2·35-s + 6·37-s + 6·39-s − 2·41-s + 4·43-s + 2·45-s − 8·47-s + 49-s − 2·51-s − 10·53-s − 4·57-s − 12·59-s − 2·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s − 0.377·7-s + 1/3·9-s + 1.66·13-s + 0.516·15-s − 0.485·17-s − 0.917·19-s − 0.218·21-s + 0.834·23-s − 1/5·25-s + 0.192·27-s − 1.85·29-s + 1.43·31-s − 0.338·35-s + 0.986·37-s + 0.960·39-s − 0.312·41-s + 0.609·43-s + 0.298·45-s − 1.16·47-s + 1/7·49-s − 0.280·51-s − 1.37·53-s − 0.529·57-s − 1.56·59-s − 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336\)    =    \(2^{4} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(2.68297\)
Root analytic conductor: \(1.63797\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.797346058\)
\(L(\frac12)\) \(\approx\) \(1.797346058\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.36300048410957114627275585967, −10.59545160919399150353614339771, −9.530718402063992031149017201598, −8.905190686502749891901965349669, −7.917190719920927542416951015280, −6.54428519689900750892915035611, −5.90015243373728427076887013140, −4.35622436888448856514855173618, −3.10934300001651305626809863177, −1.70572377211895013061556457420, 1.70572377211895013061556457420, 3.10934300001651305626809863177, 4.35622436888448856514855173618, 5.90015243373728427076887013140, 6.54428519689900750892915035611, 7.917190719920927542416951015280, 8.905190686502749891901965349669, 9.530718402063992031149017201598, 10.59545160919399150353614339771, 11.36300048410957114627275585967

Graph of the $Z$-function along the critical line