L(s) = 1 | + (−0.5 − 0.866i)5-s − 7-s + (0.5 − 0.866i)9-s + 11-s + (0.5 + 0.866i)19-s + (0.5 + 0.866i)35-s − 1.73i·37-s + (−1 − 1.73i)43-s − 0.999·45-s + (−1.5 − 0.866i)53-s + (−0.5 − 0.866i)55-s + (−0.5 + 0.866i)63-s − 77-s + (1.5 − 0.866i)79-s + (−0.499 − 0.866i)81-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)5-s − 7-s + (0.5 − 0.866i)9-s + 11-s + (0.5 + 0.866i)19-s + (0.5 + 0.866i)35-s − 1.73i·37-s + (−1 − 1.73i)43-s − 0.999·45-s + (−1.5 − 0.866i)53-s + (−0.5 − 0.866i)55-s + (−0.5 + 0.866i)63-s − 77-s + (1.5 − 0.866i)79-s + (−0.499 − 0.866i)81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9824886054\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9824886054\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 - T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
good | 3 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + T + T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + 1.73iT - T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + T + T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.781709953879737035262689963189, −7.893658345588534422232579627636, −7.02186097365728615672213171817, −6.43345799203336557288264208870, −5.66319321749649679007861006794, −4.63596351113743426226949989137, −3.76412889198418440304219515925, −3.40762661930304385902763075025, −1.79545191185697801519104198143, −0.62839135175571514933065219040,
1.44126639225351194546092073727, 2.82994591263405118069470157563, 3.32729503557027322658926649766, 4.33183717411393938849532959941, 5.09324899292741106140592203599, 6.40826105172078709610623400627, 6.63350743497419124202106247715, 7.45191202393599930272302479161, 8.106058885971312147726734417527, 9.131009534053220939561174464906