Properties

Label 2-3344-1.1-c1-0-87
Degree $2$
Conductor $3344$
Sign $-1$
Analytic cond. $26.7019$
Root an. cond. $5.16739$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.18·3-s + 0.493·5-s − 1.18·7-s + 1.76·9-s − 11-s − 1.80·13-s + 1.07·15-s − 6.21·17-s − 19-s − 2.58·21-s − 4.62·23-s − 4.75·25-s − 2.68·27-s + 4.44·29-s − 0.457·31-s − 2.18·33-s − 0.584·35-s − 3.58·37-s − 3.93·39-s − 1.33·41-s + 2.75·43-s + 0.873·45-s − 3.97·47-s − 5.59·49-s − 13.5·51-s − 6.98·53-s − 0.493·55-s + ⋯
L(s)  = 1  + 1.26·3-s + 0.220·5-s − 0.447·7-s + 0.589·9-s − 0.301·11-s − 0.500·13-s + 0.278·15-s − 1.50·17-s − 0.229·19-s − 0.564·21-s − 0.965·23-s − 0.951·25-s − 0.517·27-s + 0.825·29-s − 0.0822·31-s − 0.380·33-s − 0.0988·35-s − 0.589·37-s − 0.630·39-s − 0.208·41-s + 0.420·43-s + 0.130·45-s − 0.579·47-s − 0.799·49-s − 1.90·51-s − 0.959·53-s − 0.0665·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3344\)    =    \(2^{4} \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(26.7019\)
Root analytic conductor: \(5.16739\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3344,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 + T \)
19 \( 1 + T \)
good3 \( 1 - 2.18T + 3T^{2} \)
5 \( 1 - 0.493T + 5T^{2} \)
7 \( 1 + 1.18T + 7T^{2} \)
13 \( 1 + 1.80T + 13T^{2} \)
17 \( 1 + 6.21T + 17T^{2} \)
23 \( 1 + 4.62T + 23T^{2} \)
29 \( 1 - 4.44T + 29T^{2} \)
31 \( 1 + 0.457T + 31T^{2} \)
37 \( 1 + 3.58T + 37T^{2} \)
41 \( 1 + 1.33T + 41T^{2} \)
43 \( 1 - 2.75T + 43T^{2} \)
47 \( 1 + 3.97T + 47T^{2} \)
53 \( 1 + 6.98T + 53T^{2} \)
59 \( 1 + 0.415T + 59T^{2} \)
61 \( 1 - 7.75T + 61T^{2} \)
67 \( 1 + 3.28T + 67T^{2} \)
71 \( 1 - 15.9T + 71T^{2} \)
73 \( 1 + 0.391T + 73T^{2} \)
79 \( 1 - 1.14T + 79T^{2} \)
83 \( 1 - 15.3T + 83T^{2} \)
89 \( 1 + 12.4T + 89T^{2} \)
97 \( 1 + 3.06T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.267559542522712190957252471007, −7.74348157497290494193436151392, −6.78443142466373043398339828488, −6.17365003679573478880966785672, −5.08474661021959087709527718764, −4.18384171204454978971949980825, −3.40088604129924937321526429237, −2.47096660799521095962961951858, −1.93174727282761731305088401382, 0, 1.93174727282761731305088401382, 2.47096660799521095962961951858, 3.40088604129924937321526429237, 4.18384171204454978971949980825, 5.08474661021959087709527718764, 6.17365003679573478880966785672, 6.78443142466373043398339828488, 7.74348157497290494193436151392, 8.267559542522712190957252471007

Graph of the $Z$-function along the critical line