Properties

Label 2-3344-1.1-c1-0-77
Degree $2$
Conductor $3344$
Sign $-1$
Analytic cond. $26.7019$
Root an. cond. $5.16739$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.89·3-s − 1.20·5-s − 1.24·7-s + 0.602·9-s − 11-s + 1.24·13-s − 2.29·15-s − 0.690·17-s − 19-s − 2.35·21-s + 3.95·23-s − 3.54·25-s − 4.55·27-s − 2.09·29-s + 5.19·31-s − 1.89·33-s + 1.50·35-s − 6.64·37-s + 2.35·39-s + 6.34·41-s − 10.9·43-s − 0.727·45-s − 10.2·47-s − 5.45·49-s − 1.30·51-s + 6.93·53-s + 1.20·55-s + ⋯
L(s)  = 1  + 1.09·3-s − 0.540·5-s − 0.469·7-s + 0.200·9-s − 0.301·11-s + 0.344·13-s − 0.591·15-s − 0.167·17-s − 0.229·19-s − 0.514·21-s + 0.823·23-s − 0.708·25-s − 0.875·27-s − 0.388·29-s + 0.932·31-s − 0.330·33-s + 0.253·35-s − 1.09·37-s + 0.377·39-s + 0.991·41-s − 1.66·43-s − 0.108·45-s − 1.49·47-s − 0.779·49-s − 0.183·51-s + 0.953·53-s + 0.162·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3344\)    =    \(2^{4} \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(26.7019\)
Root analytic conductor: \(5.16739\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3344,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 + T \)
19 \( 1 + T \)
good3 \( 1 - 1.89T + 3T^{2} \)
5 \( 1 + 1.20T + 5T^{2} \)
7 \( 1 + 1.24T + 7T^{2} \)
13 \( 1 - 1.24T + 13T^{2} \)
17 \( 1 + 0.690T + 17T^{2} \)
23 \( 1 - 3.95T + 23T^{2} \)
29 \( 1 + 2.09T + 29T^{2} \)
31 \( 1 - 5.19T + 31T^{2} \)
37 \( 1 + 6.64T + 37T^{2} \)
41 \( 1 - 6.34T + 41T^{2} \)
43 \( 1 + 10.9T + 43T^{2} \)
47 \( 1 + 10.2T + 47T^{2} \)
53 \( 1 - 6.93T + 53T^{2} \)
59 \( 1 + 13.1T + 59T^{2} \)
61 \( 1 - 8.96T + 61T^{2} \)
67 \( 1 - 12.4T + 67T^{2} \)
71 \( 1 + 8.61T + 71T^{2} \)
73 \( 1 + 6.72T + 73T^{2} \)
79 \( 1 + 9.82T + 79T^{2} \)
83 \( 1 + 14.7T + 83T^{2} \)
89 \( 1 + 6.81T + 89T^{2} \)
97 \( 1 - 5.45T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.407102111614281780235626592838, −7.65052930734526244843792797230, −6.92566002242573365318516270803, −6.08682669525073095428273439852, −5.10787065619313341514669492806, −4.12816417671618833858744102349, −3.36437545393694992129232941532, −2.77366239566713966114464564082, −1.66367824486932134097459394605, 0, 1.66367824486932134097459394605, 2.77366239566713966114464564082, 3.36437545393694992129232941532, 4.12816417671618833858744102349, 5.10787065619313341514669492806, 6.08682669525073095428273439852, 6.92566002242573365318516270803, 7.65052930734526244843792797230, 8.407102111614281780235626592838

Graph of the $Z$-function along the critical line