Properties

Label 2-3344-1.1-c1-0-21
Degree $2$
Conductor $3344$
Sign $1$
Analytic cond. $26.7019$
Root an. cond. $5.16739$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.566·3-s − 3.92·5-s + 2.44·7-s − 2.67·9-s + 11-s + 6.76·13-s − 2.22·15-s − 0.175·17-s + 19-s + 1.38·21-s − 8.30·23-s + 10.4·25-s − 3.21·27-s − 0.843·29-s + 0.224·31-s + 0.566·33-s − 9.60·35-s − 3.49·37-s + 3.83·39-s + 5.09·41-s − 9.48·43-s + 10.5·45-s + 9.68·47-s − 1.01·49-s − 0.0996·51-s − 4.72·53-s − 3.92·55-s + ⋯
L(s)  = 1  + 0.326·3-s − 1.75·5-s + 0.924·7-s − 0.893·9-s + 0.301·11-s + 1.87·13-s − 0.574·15-s − 0.0426·17-s + 0.229·19-s + 0.302·21-s − 1.73·23-s + 2.08·25-s − 0.618·27-s − 0.156·29-s + 0.0403·31-s + 0.0985·33-s − 1.62·35-s − 0.574·37-s + 0.613·39-s + 0.795·41-s − 1.44·43-s + 1.56·45-s + 1.41·47-s − 0.145·49-s − 0.0139·51-s − 0.649·53-s − 0.529·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3344\)    =    \(2^{4} \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(26.7019\)
Root analytic conductor: \(5.16739\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3344,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.503652962\)
\(L(\frac12)\) \(\approx\) \(1.503652962\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 - T \)
19 \( 1 - T \)
good3 \( 1 - 0.566T + 3T^{2} \)
5 \( 1 + 3.92T + 5T^{2} \)
7 \( 1 - 2.44T + 7T^{2} \)
13 \( 1 - 6.76T + 13T^{2} \)
17 \( 1 + 0.175T + 17T^{2} \)
23 \( 1 + 8.30T + 23T^{2} \)
29 \( 1 + 0.843T + 29T^{2} \)
31 \( 1 - 0.224T + 31T^{2} \)
37 \( 1 + 3.49T + 37T^{2} \)
41 \( 1 - 5.09T + 41T^{2} \)
43 \( 1 + 9.48T + 43T^{2} \)
47 \( 1 - 9.68T + 47T^{2} \)
53 \( 1 + 4.72T + 53T^{2} \)
59 \( 1 - 7.88T + 59T^{2} \)
61 \( 1 - 14.9T + 61T^{2} \)
67 \( 1 + 2.09T + 67T^{2} \)
71 \( 1 - 7.53T + 71T^{2} \)
73 \( 1 + 1.36T + 73T^{2} \)
79 \( 1 - 1.04T + 79T^{2} \)
83 \( 1 + 2.37T + 83T^{2} \)
89 \( 1 - 3.38T + 89T^{2} \)
97 \( 1 - 19.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.452745888600250497864495751296, −8.081243712570728569970925377743, −7.41476838932127469536544323534, −6.39975168066081403446645715351, −5.59987637402521134910031339263, −4.56891039344874644803739881293, −3.75424567039116553845107986065, −3.42814910990862365183226094700, −2.01482459983854826048500665619, −0.72428638465717122638185981304, 0.72428638465717122638185981304, 2.01482459983854826048500665619, 3.42814910990862365183226094700, 3.75424567039116553845107986065, 4.56891039344874644803739881293, 5.59987637402521134910031339263, 6.39975168066081403446645715351, 7.41476838932127469536544323534, 8.081243712570728569970925377743, 8.452745888600250497864495751296

Graph of the $Z$-function along the critical line