Properties

Label 2-3344-1.1-c1-0-18
Degree $2$
Conductor $3344$
Sign $1$
Analytic cond. $26.7019$
Root an. cond. $5.16739$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.25·3-s − 2.84·5-s + 1.37·7-s + 7.60·9-s − 11-s + 4.50·13-s + 9.25·15-s + 8.04·17-s − 19-s − 4.47·21-s + 1.93·23-s + 3.08·25-s − 14.9·27-s − 6.01·29-s + 2.25·31-s + 3.25·33-s − 3.90·35-s + 6.40·37-s − 14.6·39-s − 4.47·41-s − 2.91·43-s − 21.6·45-s − 11.0·47-s − 5.11·49-s − 26.1·51-s − 2.68·53-s + 2.84·55-s + ⋯
L(s)  = 1  − 1.87·3-s − 1.27·5-s + 0.519·7-s + 2.53·9-s − 0.301·11-s + 1.24·13-s + 2.39·15-s + 1.95·17-s − 0.229·19-s − 0.976·21-s + 0.402·23-s + 0.617·25-s − 2.88·27-s − 1.11·29-s + 0.404·31-s + 0.566·33-s − 0.660·35-s + 1.05·37-s − 2.34·39-s − 0.699·41-s − 0.443·43-s − 3.22·45-s − 1.60·47-s − 0.730·49-s − 3.66·51-s − 0.369·53-s + 0.383·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3344\)    =    \(2^{4} \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(26.7019\)
Root analytic conductor: \(5.16739\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3344,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7697930272\)
\(L(\frac12)\) \(\approx\) \(0.7697930272\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 + T \)
19 \( 1 + T \)
good3 \( 1 + 3.25T + 3T^{2} \)
5 \( 1 + 2.84T + 5T^{2} \)
7 \( 1 - 1.37T + 7T^{2} \)
13 \( 1 - 4.50T + 13T^{2} \)
17 \( 1 - 8.04T + 17T^{2} \)
23 \( 1 - 1.93T + 23T^{2} \)
29 \( 1 + 6.01T + 29T^{2} \)
31 \( 1 - 2.25T + 31T^{2} \)
37 \( 1 - 6.40T + 37T^{2} \)
41 \( 1 + 4.47T + 41T^{2} \)
43 \( 1 + 2.91T + 43T^{2} \)
47 \( 1 + 11.0T + 47T^{2} \)
53 \( 1 + 2.68T + 53T^{2} \)
59 \( 1 - 13.7T + 59T^{2} \)
61 \( 1 - 0.975T + 61T^{2} \)
67 \( 1 - 6.49T + 67T^{2} \)
71 \( 1 - 15.7T + 71T^{2} \)
73 \( 1 - 4.99T + 73T^{2} \)
79 \( 1 - 4.33T + 79T^{2} \)
83 \( 1 + 4.62T + 83T^{2} \)
89 \( 1 + 15.6T + 89T^{2} \)
97 \( 1 + 0.0256T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.198567403567993753109815686161, −7.924006877320310334581625069826, −7.02389866764393634708235567792, −6.32616769932278792230811710993, −5.46929936718572704256448345454, −5.01576314374020842116856109853, −4.04126952809553522203288574102, −3.45347743597300010618274802882, −1.49189262791119483110151022276, −0.63189858483081410786641183464, 0.63189858483081410786641183464, 1.49189262791119483110151022276, 3.45347743597300010618274802882, 4.04126952809553522203288574102, 5.01576314374020842116856109853, 5.46929936718572704256448345454, 6.32616769932278792230811710993, 7.02389866764393634708235567792, 7.924006877320310334581625069826, 8.198567403567993753109815686161

Graph of the $Z$-function along the critical line