L(s) = 1 | + 2-s − 3-s + 4-s − 6-s + 8-s − 11-s − 12-s − 13-s + 16-s + 17-s − 22-s + 2·23-s − 24-s + 25-s − 26-s + 27-s + 2·31-s + 32-s + 33-s + 34-s + 39-s − 44-s + 2·46-s − 48-s + 50-s − 51-s − 52-s + ⋯ |
L(s) = 1 | + 2-s − 3-s + 4-s − 6-s + 8-s − 11-s − 12-s − 13-s + 16-s + 17-s − 22-s + 2·23-s − 24-s + 25-s − 26-s + 27-s + 2·31-s + 32-s + 33-s + 34-s + 39-s − 44-s + 2·46-s − 48-s + 50-s − 51-s − 52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.688036655\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.688036655\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 7 | \( 1 \) |
| 17 | \( 1 - T \) |
good | 3 | \( 1 + T + T^{2} \) |
| 5 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( 1 + T + T^{2} \) |
| 13 | \( 1 + T + T^{2} \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( ( 1 - T )^{2} \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( ( 1 - T )^{2} \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( 1 + T + T^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.672535400823614558709734307154, −7.77066689508039960791721988359, −7.09377876127807547519649891787, −6.40811280448717696616307850827, −5.58590977911947738300952748960, −4.97944284632773598745577165062, −4.62150966073764101748083850606, −3.07512903935494220247701262420, −2.71007625616584400486278396897, −1.07782926336385960956704110602,
1.07782926336385960956704110602, 2.71007625616584400486278396897, 3.07512903935494220247701262420, 4.62150966073764101748083850606, 4.97944284632773598745577165062, 5.58590977911947738300952748960, 6.40811280448717696616307850827, 7.09377876127807547519649891787, 7.77066689508039960791721988359, 8.672535400823614558709734307154