L(s) = 1 | + 2-s + 3-s + 4-s + 6-s + 8-s + 11-s + 12-s − 13-s + 16-s + 17-s + 22-s − 2·23-s + 24-s + 25-s − 26-s − 27-s − 2·31-s + 32-s + 33-s + 34-s − 39-s + 44-s − 2·46-s + 48-s + 50-s + 51-s − 52-s + ⋯ |
L(s) = 1 | + 2-s + 3-s + 4-s + 6-s + 8-s + 11-s + 12-s − 13-s + 16-s + 17-s + 22-s − 2·23-s + 24-s + 25-s − 26-s − 27-s − 2·31-s + 32-s + 33-s + 34-s − 39-s + 44-s − 2·46-s + 48-s + 50-s + 51-s − 52-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
1
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ3332(883,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), 1)
|
Particular Values
L(21) |
≈ |
3.311204680 |
L(21) |
≈ |
3.311204680 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 7 | 1 |
| 17 | 1−T |
good | 3 | 1−T+T2 |
| 5 | (1−T)(1+T) |
| 11 | 1−T+T2 |
| 13 | 1+T+T2 |
| 19 | (1−T)(1+T) |
| 23 | (1+T)2 |
| 29 | (1−T)(1+T) |
| 31 | (1+T)2 |
| 37 | (1−T)(1+T) |
| 41 | (1−T)(1+T) |
| 43 | (1−T)(1+T) |
| 47 | (1−T)(1+T) |
| 53 | 1+T+T2 |
| 59 | (1−T)(1+T) |
| 61 | (1−T)(1+T) |
| 67 | (1−T)(1+T) |
| 71 | 1−T+T2 |
| 73 | (1−T)(1+T) |
| 79 | 1−T+T2 |
| 83 | (1−T)(1+T) |
| 89 | 1+T+T2 |
| 97 | (1−T)(1+T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.750923436368834414603330497536, −7.83391507264668844340343737627, −7.43004858406289332920532983976, −6.48631318380755617525975688312, −5.72681217986316193188470379777, −4.92180405279032661637103741160, −3.88621534427499322473961829782, −3.44323487701105061188141418079, −2.45818357139276637353272527240, −1.67914071433243041950453158480,
1.67914071433243041950453158480, 2.45818357139276637353272527240, 3.44323487701105061188141418079, 3.88621534427499322473961829782, 4.92180405279032661637103741160, 5.72681217986316193188470379777, 6.48631318380755617525975688312, 7.43004858406289332920532983976, 7.83391507264668844340343737627, 8.750923436368834414603330497536