L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (0.707 + 0.292i)5-s + (0.707 + 0.707i)8-s + (−0.707 − 0.707i)9-s + (−0.707 + 0.292i)10-s − 1.00·16-s + (0.707 − 0.707i)17-s + 1.00·18-s + (0.292 − 0.707i)20-s + (−0.292 − 0.292i)25-s + (0.707 + 0.292i)29-s + (0.707 − 0.707i)32-s + 1.00i·34-s + (−0.707 + 0.707i)36-s + (0.292 − 0.707i)37-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (0.707 + 0.292i)5-s + (0.707 + 0.707i)8-s + (−0.707 − 0.707i)9-s + (−0.707 + 0.292i)10-s − 1.00·16-s + (0.707 − 0.707i)17-s + 1.00·18-s + (0.292 − 0.707i)20-s + (−0.292 − 0.292i)25-s + (0.707 + 0.292i)29-s + (0.707 − 0.707i)32-s + 1.00i·34-s + (−0.707 + 0.707i)36-s + (0.292 − 0.707i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0758i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0758i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9421070093\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9421070093\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (-0.707 + 0.707i)T \) |
good | 3 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 5 | \( 1 + (-0.707 - 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 29 | \( 1 + (-0.707 - 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 37 | \( 1 + (-0.292 + 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 41 | \( 1 + (-1.70 + 0.707i)T + (0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (1 - i)T - iT^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + (-1.70 + 0.707i)T + (0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 + 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + 2iT - T^{2} \) |
| 97 | \( 1 + (-0.707 - 0.292i)T + (0.707 + 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.929050911812532295571743181642, −8.048431797944206073294240653001, −7.35725301672674617264393680956, −6.54889509110673790873987493931, −5.92382771393812870142007529452, −5.40727290182896558775355125325, −4.34711649536263176711536211360, −3.07206091283863621809561178184, −2.16111172548121158707996751811, −0.821717434010725781486152411641,
1.19184740120769111915557366517, 2.18186718006145966775075437264, 2.95020549410106364208670631832, 3.97289982351400572450958247198, 4.95418161849566728379002367075, 5.77978260182117092063982908069, 6.58310090312581522576963180669, 7.70807169230564565530702917315, 8.136176203747341750846830767904, 8.856135268881416252023516474432