L(s) = 1 | + (−0.608 − 0.793i)2-s + (−0.258 + 0.965i)4-s + (0.357 − 1.05i)5-s + (0.923 − 0.382i)8-s + (−0.991 − 0.130i)9-s + (−1.05 + 0.357i)10-s + (−1 − i)13-s + (−0.866 − 0.499i)16-s + (−0.991 + 0.130i)17-s + (0.499 + 0.866i)18-s + (0.923 + 0.617i)20-s + (−0.186 − 0.142i)25-s + (−0.184 + 1.40i)26-s + (−1.63 + 0.324i)29-s + (0.130 + 0.991i)32-s + ⋯ |
L(s) = 1 | + (−0.608 − 0.793i)2-s + (−0.258 + 0.965i)4-s + (0.357 − 1.05i)5-s + (0.923 − 0.382i)8-s + (−0.991 − 0.130i)9-s + (−1.05 + 0.357i)10-s + (−1 − i)13-s + (−0.866 − 0.499i)16-s + (−0.991 + 0.130i)17-s + (0.499 + 0.866i)18-s + (0.923 + 0.617i)20-s + (−0.186 − 0.142i)25-s + (−0.184 + 1.40i)26-s + (−1.63 + 0.324i)29-s + (0.130 + 0.991i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.637 - 0.770i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.637 - 0.770i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2201727147\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2201727147\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.608 + 0.793i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (0.991 - 0.130i)T \) |
good | 3 | \( 1 + (0.991 + 0.130i)T^{2} \) |
| 5 | \( 1 + (-0.357 + 1.05i)T + (-0.793 - 0.608i)T^{2} \) |
| 11 | \( 1 + (-0.608 - 0.793i)T^{2} \) |
| 13 | \( 1 + (1 + i)T + iT^{2} \) |
| 19 | \( 1 + (-0.258 + 0.965i)T^{2} \) |
| 23 | \( 1 + (-0.991 + 0.130i)T^{2} \) |
| 29 | \( 1 + (1.63 - 0.324i)T + (0.923 - 0.382i)T^{2} \) |
| 31 | \( 1 + (-0.991 - 0.130i)T^{2} \) |
| 37 | \( 1 + (-0.491 - 0.996i)T + (-0.608 + 0.793i)T^{2} \) |
| 41 | \( 1 + (0.382 + 0.0761i)T + (0.923 + 0.382i)T^{2} \) |
| 43 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + (1.83 - 0.241i)T + (0.965 - 0.258i)T^{2} \) |
| 59 | \( 1 + (0.258 + 0.965i)T^{2} \) |
| 61 | \( 1 + (-1.47 - 1.29i)T + (0.130 + 0.991i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 73 | \( 1 + (1.09 + 1.25i)T + (-0.130 + 0.991i)T^{2} \) |
| 79 | \( 1 + (0.991 - 0.130i)T^{2} \) |
| 83 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 + (0.517 + 1.93i)T + (-0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + (0.324 + 1.63i)T + (-0.923 + 0.382i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.541403258882402718043446554324, −7.891809248148543511084237580565, −7.08526605957433470498689699333, −5.92840141031400995817855523953, −5.13654836443442186499473789685, −4.47263549332804715036670535589, −3.32408705703150201900701239948, −2.53613925868310853181012624126, −1.52466957322934558575355552672, −0.15009820550092238405954904493,
1.98755029130177010358885936320, 2.59678719798056653351466643487, 3.95244145307370466191685129262, 4.96872804647057930220157152315, 5.71042765411795723594646184143, 6.53818107195583013651792705188, 6.93959309806080574745644897060, 7.72753835260884023600803184433, 8.484294807332236808007268412394, 9.489554412367016842200346676236