L(s) = 1 | + (0.608 + 0.793i)2-s + (−0.258 + 0.965i)4-s + (0.534 − 1.57i)5-s + (−0.923 + 0.382i)8-s + (−0.991 − 0.130i)9-s + (1.57 − 0.534i)10-s + (−1 − i)13-s + (−0.866 − 0.499i)16-s + (−0.130 − 0.991i)17-s + (−0.499 − 0.866i)18-s + (1.38 + 0.923i)20-s + (−1.40 − 1.07i)25-s + (0.184 − 1.40i)26-s + (1.63 − 0.324i)29-s + (−0.130 − 0.991i)32-s + ⋯ |
L(s) = 1 | + (0.608 + 0.793i)2-s + (−0.258 + 0.965i)4-s + (0.534 − 1.57i)5-s + (−0.923 + 0.382i)8-s + (−0.991 − 0.130i)9-s + (1.57 − 0.534i)10-s + (−1 − i)13-s + (−0.866 − 0.499i)16-s + (−0.130 − 0.991i)17-s + (−0.499 − 0.866i)18-s + (1.38 + 0.923i)20-s + (−1.40 − 1.07i)25-s + (0.184 − 1.40i)26-s + (1.63 − 0.324i)29-s + (−0.130 − 0.991i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.663 + 0.748i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.663 + 0.748i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.322646047\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.322646047\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.608 - 0.793i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (0.130 + 0.991i)T \) |
good | 3 | \( 1 + (0.991 + 0.130i)T^{2} \) |
| 5 | \( 1 + (-0.534 + 1.57i)T + (-0.793 - 0.608i)T^{2} \) |
| 11 | \( 1 + (-0.608 - 0.793i)T^{2} \) |
| 13 | \( 1 + (1 + i)T + iT^{2} \) |
| 19 | \( 1 + (-0.258 + 0.965i)T^{2} \) |
| 23 | \( 1 + (-0.991 + 0.130i)T^{2} \) |
| 29 | \( 1 + (-1.63 + 0.324i)T + (0.923 - 0.382i)T^{2} \) |
| 31 | \( 1 + (-0.991 - 0.130i)T^{2} \) |
| 37 | \( 1 + (0.491 + 0.996i)T + (-0.608 + 0.793i)T^{2} \) |
| 41 | \( 1 + (-1.92 - 0.382i)T + (0.923 + 0.382i)T^{2} \) |
| 43 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + (1.83 - 0.241i)T + (0.965 - 0.258i)T^{2} \) |
| 59 | \( 1 + (0.258 + 0.965i)T^{2} \) |
| 61 | \( 1 + (0.293 + 0.257i)T + (0.130 + 0.991i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 73 | \( 1 + (0.732 + 0.835i)T + (-0.130 + 0.991i)T^{2} \) |
| 79 | \( 1 + (0.991 - 0.130i)T^{2} \) |
| 83 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + (-0.216 - 1.08i)T + (-0.923 + 0.382i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.569192454929786548545562874967, −7.998331199383159421327431725653, −7.29010344642362522736107913714, −6.12683356032777993109415737128, −5.67358649989842701492300967138, −4.86988060885505227118577981873, −4.56377832912830162424196794067, −3.16662460160596091032345210624, −2.40032011223918237020799365135, −0.60367659484654544932842997203,
1.77000008332226694898470075797, 2.62681371545503231488382208506, 3.07307609203687524867073333268, 4.14508349696832526930309718056, 5.01872849020710526683188079427, 6.01098545523467612072935482162, 6.42119760044200689669973488735, 7.14523907649296994017677319877, 8.250156086789296288085640488635, 9.175430773720130262630782107948