L(s) = 1 | + (−0.130 + 0.991i)2-s + (−0.965 − 0.258i)4-s + (−1.95 + 0.128i)5-s + (0.382 − 0.923i)8-s + (−0.793 + 0.608i)9-s + (0.128 − 1.95i)10-s + (−1 + i)13-s + (0.866 + 0.5i)16-s + (−0.608 + 0.793i)17-s + (−0.499 − 0.866i)18-s + (1.92 + 0.382i)20-s + (2.82 − 0.371i)25-s + (−0.860 − 1.12i)26-s + (−1.08 − 1.63i)29-s + (−0.608 + 0.793i)32-s + ⋯ |
L(s) = 1 | + (−0.130 + 0.991i)2-s + (−0.965 − 0.258i)4-s + (−1.95 + 0.128i)5-s + (0.382 − 0.923i)8-s + (−0.793 + 0.608i)9-s + (0.128 − 1.95i)10-s + (−1 + i)13-s + (0.866 + 0.5i)16-s + (−0.608 + 0.793i)17-s + (−0.499 − 0.866i)18-s + (1.92 + 0.382i)20-s + (2.82 − 0.371i)25-s + (−0.860 − 1.12i)26-s + (−1.08 − 1.63i)29-s + (−0.608 + 0.793i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.977 + 0.210i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.977 + 0.210i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2433829916\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2433829916\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.130 - 0.991i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (0.608 - 0.793i)T \) |
good | 3 | \( 1 + (0.793 - 0.608i)T^{2} \) |
| 5 | \( 1 + (1.95 - 0.128i)T + (0.991 - 0.130i)T^{2} \) |
| 11 | \( 1 + (0.130 - 0.991i)T^{2} \) |
| 13 | \( 1 + (1 - i)T - iT^{2} \) |
| 19 | \( 1 + (-0.965 - 0.258i)T^{2} \) |
| 23 | \( 1 + (-0.793 - 0.608i)T^{2} \) |
| 29 | \( 1 + (1.08 + 1.63i)T + (-0.382 + 0.923i)T^{2} \) |
| 31 | \( 1 + (-0.793 + 0.608i)T^{2} \) |
| 37 | \( 1 + (0.293 + 0.257i)T + (0.130 + 0.991i)T^{2} \) |
| 41 | \( 1 + (-0.617 + 0.923i)T + (-0.382 - 0.923i)T^{2} \) |
| 43 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (-0.607 - 0.465i)T + (0.258 + 0.965i)T^{2} \) |
| 59 | \( 1 + (0.965 - 0.258i)T^{2} \) |
| 61 | \( 1 + (-1.49 + 0.735i)T + (0.608 - 0.793i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 73 | \( 1 + (-0.172 + 0.349i)T + (-0.608 - 0.793i)T^{2} \) |
| 79 | \( 1 + (0.793 + 0.608i)T^{2} \) |
| 83 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 97 | \( 1 + (-0.324 + 0.216i)T + (0.382 - 0.923i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.561804097382279161561649167588, −7.905310852064726178443455150062, −7.41446417555298930882076927287, −6.79992144257887720537175170017, −5.84282170873255061320412300333, −4.88039242449208098389527798715, −4.22191404972935413977719331420, −3.66228958969135815401008228742, −2.29394091253661954429630664420, −0.22147116485545379211991940325,
0.819842699255900549429978681864, 2.62453778598338894169929945115, 3.26612017678013790337823239918, 3.92360100004240393556871873787, 4.83851897787974999691799190369, 5.40338506192221491182863516561, 6.92626807436048388404239918782, 7.53503153514174717763960967800, 8.251321262513451820172794383727, 8.799582035514301676223557652427