L(s) = 1 | + (−0.130 + 0.991i)2-s + (−0.965 − 0.258i)4-s + (−1.95 + 0.128i)5-s + (0.382 − 0.923i)8-s + (−0.793 + 0.608i)9-s + (0.128 − 1.95i)10-s + (−1 + i)13-s + (0.866 + 0.5i)16-s + (−0.608 + 0.793i)17-s + (−0.499 − 0.866i)18-s + (1.92 + 0.382i)20-s + (2.82 − 0.371i)25-s + (−0.860 − 1.12i)26-s + (−1.08 − 1.63i)29-s + (−0.608 + 0.793i)32-s + ⋯ |
L(s) = 1 | + (−0.130 + 0.991i)2-s + (−0.965 − 0.258i)4-s + (−1.95 + 0.128i)5-s + (0.382 − 0.923i)8-s + (−0.793 + 0.608i)9-s + (0.128 − 1.95i)10-s + (−1 + i)13-s + (0.866 + 0.5i)16-s + (−0.608 + 0.793i)17-s + (−0.499 − 0.866i)18-s + (1.92 + 0.382i)20-s + (2.82 − 0.371i)25-s + (−0.860 − 1.12i)26-s + (−1.08 − 1.63i)29-s + (−0.608 + 0.793i)32-s + ⋯ |
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.977+0.210i)Λ(1−s)
Λ(s)=(=(3332s/2ΓC(s)L(s)(0.977+0.210i)Λ(1−s)
Degree: |
2 |
Conductor: |
3332
= 22⋅72⋅17
|
Sign: |
0.977+0.210i
|
Analytic conductor: |
1.66288 |
Root analytic conductor: |
1.28952 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3332(1391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3332, ( :0), 0.977+0.210i)
|
Particular Values
L(21) |
≈ |
0.2433829916 |
L(21) |
≈ |
0.2433829916 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.130−0.991i)T |
| 7 | 1 |
| 17 | 1+(0.608−0.793i)T |
good | 3 | 1+(0.793−0.608i)T2 |
| 5 | 1+(1.95−0.128i)T+(0.991−0.130i)T2 |
| 11 | 1+(0.130−0.991i)T2 |
| 13 | 1+(1−i)T−iT2 |
| 19 | 1+(−0.965−0.258i)T2 |
| 23 | 1+(−0.793−0.608i)T2 |
| 29 | 1+(1.08+1.63i)T+(−0.382+0.923i)T2 |
| 31 | 1+(−0.793+0.608i)T2 |
| 37 | 1+(0.293+0.257i)T+(0.130+0.991i)T2 |
| 41 | 1+(−0.617+0.923i)T+(−0.382−0.923i)T2 |
| 43 | 1+(−0.707−0.707i)T2 |
| 47 | 1+(0.866−0.5i)T2 |
| 53 | 1+(−0.607−0.465i)T+(0.258+0.965i)T2 |
| 59 | 1+(0.965−0.258i)T2 |
| 61 | 1+(−1.49+0.735i)T+(0.608−0.793i)T2 |
| 67 | 1+(−0.5+0.866i)T2 |
| 71 | 1+(0.923+0.382i)T2 |
| 73 | 1+(−0.172+0.349i)T+(−0.608−0.793i)T2 |
| 79 | 1+(0.793+0.608i)T2 |
| 83 | 1+(−0.707+0.707i)T2 |
| 89 | 1+(0.866−0.5i)T2 |
| 97 | 1+(−0.324+0.216i)T+(0.382−0.923i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.561804097382279161561649167588, −7.905310852064726178443455150062, −7.41446417555298930882076927287, −6.79992144257887720537175170017, −5.84282170873255061320412300333, −4.88039242449208098389527798715, −4.22191404972935413977719331420, −3.66228958969135815401008228742, −2.29394091253661954429630664420, −0.22147116485545379211991940325,
0.819842699255900549429978681864, 2.62453778598338894169929945115, 3.26612017678013790337823239918, 3.92360100004240393556871873787, 4.83851897787974999691799190369, 5.40338506192221491182863516561, 6.92626807436048388404239918782, 7.53503153514174717763960967800, 8.251321262513451820172794383727, 8.799582035514301676223557652427