L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (1.36 − 0.366i)5-s + 0.999i·8-s + (−0.866 − 0.5i)9-s + (1.36 + 0.366i)10-s + 2·13-s + (−0.5 + 0.866i)16-s + (−0.866 + 0.5i)17-s + (−0.499 − 0.866i)18-s + (0.999 + 0.999i)20-s + (0.866 − 0.5i)25-s + (1.73 + i)26-s + (−1 − i)29-s + (−0.866 + 0.499i)32-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s + (1.36 − 0.366i)5-s + 0.999i·8-s + (−0.866 − 0.5i)9-s + (1.36 + 0.366i)10-s + 2·13-s + (−0.5 + 0.866i)16-s + (−0.866 + 0.5i)17-s + (−0.499 − 0.866i)18-s + (0.999 + 0.999i)20-s + (0.866 − 0.5i)25-s + (1.73 + i)26-s + (−1 − i)29-s + (−0.866 + 0.499i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.710 - 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.710 - 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.628893994\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.628893994\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (0.866 - 0.5i)T \) |
good | 3 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 5 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 13 | \( 1 - 2T + T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + (1 + i)T + iT^{2} \) |
| 31 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 37 | \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + (-1 + i)T - iT^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 79 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (1 + i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.691203231426223991736343398602, −8.390995080227855423496986655323, −7.13042105437982099966483284733, −6.29297238121707521700936330877, −5.86357781332091742982085489698, −5.46136599186621778450574971078, −4.23651535896121596928196851308, −3.56252641311759928764043108461, −2.49724869189337234910806714464, −1.57587011085967825806985705991,
1.44995098844442317643185474940, 2.23577455025725957721803482243, 3.09168935815191782732982708544, 3.90134140255946095315776947519, 5.11301011010912190998462233852, 5.58710324861576035781463989279, 6.32846239736859457853336198308, 6.74459308188848597710047840130, 8.003476686237513307009532961569, 9.056078902727679139194131891467