L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.366 + 1.36i)5-s + 0.999i·8-s + (0.866 − 0.5i)9-s + (−0.366 − 1.36i)10-s + 2·13-s + (−0.5 − 0.866i)16-s + (0.866 + 0.5i)17-s + (−0.499 + 0.866i)18-s + (0.999 + 0.999i)20-s + (−0.866 − 0.5i)25-s + (−1.73 + i)26-s + (−1 − i)29-s + (0.866 + 0.499i)32-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.366 + 1.36i)5-s + 0.999i·8-s + (0.866 − 0.5i)9-s + (−0.366 − 1.36i)10-s + 2·13-s + (−0.5 − 0.866i)16-s + (0.866 + 0.5i)17-s + (−0.499 + 0.866i)18-s + (0.999 + 0.999i)20-s + (−0.866 − 0.5i)25-s + (−1.73 + i)26-s + (−1 − i)29-s + (0.866 + 0.499i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.510 - 0.859i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.510 - 0.859i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9685260811\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9685260811\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (-0.866 - 0.5i)T \) |
good | 3 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 5 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 13 | \( 1 - 2T + T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + (1 + i)T + iT^{2} \) |
| 31 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 37 | \( 1 + (-0.366 + 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + (-1 + i)T - iT^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 79 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (1 + i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.005703529698859567353863122746, −7.87628332121347762491039638003, −7.64051642119053652538365908114, −6.68487333782449276333389837327, −6.23298662726150483540466471606, −5.57187666913145199100515301077, −3.99545074357470701238648966509, −3.52462170581088793703702568455, −2.25003092462770182534077476561, −1.11293147012693427219868294174,
1.11758881126011125926257269677, 1.53683453102130554480168920674, 3.09752956401576953025995233556, 3.94570576014562021581925710889, 4.64947582485251837650653996045, 5.65296988350534869298472054807, 6.61130599457158151863301787413, 7.58101760149600110564752394401, 8.099857452273330144927158153607, 8.696523585368969429833165058444