L(s) = 1 | + (0.793 + 0.608i)2-s + (0.258 + 0.965i)4-s + (0.349 + 0.172i)5-s + (−0.382 + 0.923i)8-s + (0.130 + 0.991i)9-s + (0.172 + 0.349i)10-s + (1 − i)13-s + (−0.866 + 0.499i)16-s + (0.991 + 0.130i)17-s + (−0.499 + 0.866i)18-s + (−0.0761 + 0.382i)20-s + (−0.516 − 0.672i)25-s + (1.40 − 0.184i)26-s + (−0.324 + 0.216i)29-s + (−0.991 − 0.130i)32-s + ⋯ |
L(s) = 1 | + (0.793 + 0.608i)2-s + (0.258 + 0.965i)4-s + (0.349 + 0.172i)5-s + (−0.382 + 0.923i)8-s + (0.130 + 0.991i)9-s + (0.172 + 0.349i)10-s + (1 − i)13-s + (−0.866 + 0.499i)16-s + (0.991 + 0.130i)17-s + (−0.499 + 0.866i)18-s + (−0.0761 + 0.382i)20-s + (−0.516 − 0.672i)25-s + (1.40 − 0.184i)26-s + (−0.324 + 0.216i)29-s + (−0.991 − 0.130i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0516 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0516 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.194064297\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.194064297\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.793 - 0.608i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (-0.991 - 0.130i)T \) |
good | 3 | \( 1 + (-0.130 - 0.991i)T^{2} \) |
| 5 | \( 1 + (-0.349 - 0.172i)T + (0.608 + 0.793i)T^{2} \) |
| 11 | \( 1 + (-0.793 - 0.608i)T^{2} \) |
| 13 | \( 1 + (-1 + i)T - iT^{2} \) |
| 19 | \( 1 + (0.258 + 0.965i)T^{2} \) |
| 23 | \( 1 + (0.130 - 0.991i)T^{2} \) |
| 29 | \( 1 + (0.324 - 0.216i)T + (0.382 - 0.923i)T^{2} \) |
| 31 | \( 1 + (0.130 + 0.991i)T^{2} \) |
| 37 | \( 1 + (-0.630 - 1.85i)T + (-0.793 + 0.608i)T^{2} \) |
| 41 | \( 1 + (1.38 + 0.923i)T + (0.382 + 0.923i)T^{2} \) |
| 43 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (-0.0999 + 0.758i)T + (-0.965 - 0.258i)T^{2} \) |
| 59 | \( 1 + (-0.258 + 0.965i)T^{2} \) |
| 61 | \( 1 + (1.10 + 0.0726i)T + (0.991 + 0.130i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 73 | \( 1 + (-0.128 - 1.95i)T + (-0.991 + 0.130i)T^{2} \) |
| 79 | \( 1 + (-0.130 + 0.991i)T^{2} \) |
| 83 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 97 | \( 1 + (1.08 + 1.63i)T + (-0.382 + 0.923i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.534269953946038836903667518349, −8.203613717487905045375259823897, −7.48728324717819847347101187981, −6.64891779256505004830767666400, −5.83330095445323012944140953156, −5.37205450003309324570561017798, −4.51135377191910050338141179576, −3.52798129164202713385376523399, −2.82098819551201619757154601558, −1.67117605416994708389889069628,
1.13033797369965664055026025301, 1.97529684919302614056206822078, 3.26192543483382909183639207555, 3.80214161159515946150958805452, 4.63354307393330790716066007458, 5.66555563104512051745730346163, 6.12027901003190614537550368792, 6.86918203642359167760255518047, 7.77406451797308688349958911542, 9.055666808399483117690291798219