L(s) = 1 | + (−0.382 + 0.923i)2-s + (−0.707 − 0.707i)4-s + (−1.08 + 0.216i)5-s + (0.923 − 0.382i)8-s + (0.382 + 0.923i)9-s + (0.216 − 1.08i)10-s + (−1 − i)13-s + i·16-s + (0.382 − 0.923i)17-s − 18-s + (0.923 + 0.617i)20-s + (0.216 − 0.0897i)25-s + (1.30 − 0.541i)26-s + (−1.63 + 0.324i)29-s + (−0.923 − 0.382i)32-s + ⋯ |
L(s) = 1 | + (−0.382 + 0.923i)2-s + (−0.707 − 0.707i)4-s + (−1.08 + 0.216i)5-s + (0.923 − 0.382i)8-s + (0.382 + 0.923i)9-s + (0.216 − 1.08i)10-s + (−1 − i)13-s + i·16-s + (0.382 − 0.923i)17-s − 18-s + (0.923 + 0.617i)20-s + (0.216 − 0.0897i)25-s + (1.30 − 0.541i)26-s + (−1.63 + 0.324i)29-s + (−0.923 − 0.382i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.829 + 0.558i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.829 + 0.558i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4658608029\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4658608029\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.382 - 0.923i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (-0.382 + 0.923i)T \) |
good | 3 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 5 | \( 1 + (1.08 - 0.216i)T + (0.923 - 0.382i)T^{2} \) |
| 11 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 13 | \( 1 + (1 + i)T + iT^{2} \) |
| 19 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 23 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 29 | \( 1 + (1.63 - 0.324i)T + (0.923 - 0.382i)T^{2} \) |
| 31 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 37 | \( 1 + (-0.617 + 0.923i)T + (-0.382 - 0.923i)T^{2} \) |
| 41 | \( 1 + (0.382 + 0.0761i)T + (0.923 + 0.382i)T^{2} \) |
| 43 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (-0.707 + 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 61 | \( 1 + (-0.382 + 1.92i)T + (-0.923 - 0.382i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 73 | \( 1 + (-1.63 + 0.324i)T + (0.923 - 0.382i)T^{2} \) |
| 79 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 83 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 + (1.41 - 1.41i)T - iT^{2} \) |
| 97 | \( 1 + (0.324 + 1.63i)T + (-0.923 + 0.382i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.358411419394985777200342971801, −7.88219996787708898077169743107, −7.34451318918079184160997367945, −6.89907983964762003195097550129, −5.53069892173393912622571144821, −5.16234477440234487098066807691, −4.25773054531528509053914541462, −3.35843401669977870108536445147, −2.05701410331284451040445214289, −0.36059908334400582422416166607,
1.17028550969851804372648981741, 2.30545358562821348702677656642, 3.47335404201374123687714644612, 4.06550273769375665735212058696, 4.59780246802268836612957405555, 5.80104319044284551948325549871, 6.96261564449593814341954809725, 7.53432950095458871578746403638, 8.235067267082407739747461925078, 9.013681230999474553388417426687