L(s) = 1 | + (0.382 − 0.923i)2-s + (−0.707 − 0.707i)4-s + (−1.63 + 0.324i)5-s + (−0.923 + 0.382i)8-s + (0.382 + 0.923i)9-s + (−0.324 + 1.63i)10-s + (−1 − i)13-s + i·16-s + (0.923 + 0.382i)17-s + 18-s + (1.38 + 0.923i)20-s + (1.63 − 0.675i)25-s + (−1.30 + 0.541i)26-s + (1.63 − 0.324i)29-s + (0.923 + 0.382i)32-s + ⋯ |
L(s) = 1 | + (0.382 − 0.923i)2-s + (−0.707 − 0.707i)4-s + (−1.63 + 0.324i)5-s + (−0.923 + 0.382i)8-s + (0.382 + 0.923i)9-s + (−0.324 + 1.63i)10-s + (−1 − i)13-s + i·16-s + (0.923 + 0.382i)17-s + 18-s + (1.38 + 0.923i)20-s + (1.63 − 0.675i)25-s + (−1.30 + 0.541i)26-s + (1.63 − 0.324i)29-s + (0.923 + 0.382i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.655 + 0.755i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.655 + 0.755i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9520892500\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9520892500\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.382 + 0.923i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (-0.923 - 0.382i)T \) |
good | 3 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 5 | \( 1 + (1.63 - 0.324i)T + (0.923 - 0.382i)T^{2} \) |
| 11 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 13 | \( 1 + (1 + i)T + iT^{2} \) |
| 19 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 23 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 29 | \( 1 + (-1.63 + 0.324i)T + (0.923 - 0.382i)T^{2} \) |
| 31 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 37 | \( 1 + (0.617 - 0.923i)T + (-0.382 - 0.923i)T^{2} \) |
| 41 | \( 1 + (-1.92 - 0.382i)T + (0.923 + 0.382i)T^{2} \) |
| 43 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (-0.707 + 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 61 | \( 1 + (0.0761 - 0.382i)T + (-0.923 - 0.382i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 73 | \( 1 + (-1.08 + 0.216i)T + (0.923 - 0.382i)T^{2} \) |
| 79 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 83 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 - iT^{2} \) |
| 97 | \( 1 + (-0.216 - 1.08i)T + (-0.923 + 0.382i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.539277637454586823114180111845, −7.963859740913043842546921787914, −7.49126400908310215419479802859, −6.44437371002927748019496787789, −5.26832140116316583273203288119, −4.73474772549740485192416813520, −3.93927756871623078463662209014, −3.14755882911110498273843616743, −2.41371966081223272242639332675, −0.873822057349656624008884387724,
0.75338268380273288994846534574, 2.84265920237594508674792660421, 3.75320897067519182747173004985, 4.32588279678546734717344980967, 4.91838261180442431730302125229, 5.97121923036487830064745367111, 6.93764564457216459236238502471, 7.33009259371484456636303457079, 7.922318879497863688501989508852, 8.823109206667194693202719294954