L(s) = 1 | + (0.130 + 0.991i)2-s + (−0.965 + 0.258i)4-s + (0.0255 − 0.389i)5-s + (−0.382 − 0.923i)8-s + (0.793 + 0.608i)9-s + (0.389 − 0.0255i)10-s + (−1 − i)13-s + (0.866 − 0.5i)16-s + (0.608 + 0.793i)17-s + (−0.499 + 0.866i)18-s + (0.0761 + 0.382i)20-s + (0.840 + 0.110i)25-s + (0.860 − 1.12i)26-s + (−0.324 − 0.216i)29-s + (0.608 + 0.793i)32-s + ⋯ |
L(s) = 1 | + (0.130 + 0.991i)2-s + (−0.965 + 0.258i)4-s + (0.0255 − 0.389i)5-s + (−0.382 − 0.923i)8-s + (0.793 + 0.608i)9-s + (0.389 − 0.0255i)10-s + (−1 − i)13-s + (0.866 − 0.5i)16-s + (0.608 + 0.793i)17-s + (−0.499 + 0.866i)18-s + (0.0761 + 0.382i)20-s + (0.840 + 0.110i)25-s + (0.860 − 1.12i)26-s + (−0.324 − 0.216i)29-s + (0.608 + 0.793i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.315 - 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.315 - 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.260830353\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.260830353\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.130 - 0.991i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (-0.608 - 0.793i)T \) |
good | 3 | \( 1 + (-0.793 - 0.608i)T^{2} \) |
| 5 | \( 1 + (-0.0255 + 0.389i)T + (-0.991 - 0.130i)T^{2} \) |
| 11 | \( 1 + (-0.130 - 0.991i)T^{2} \) |
| 13 | \( 1 + (1 + i)T + iT^{2} \) |
| 19 | \( 1 + (-0.965 + 0.258i)T^{2} \) |
| 23 | \( 1 + (0.793 - 0.608i)T^{2} \) |
| 29 | \( 1 + (0.324 + 0.216i)T + (0.382 + 0.923i)T^{2} \) |
| 31 | \( 1 + (0.793 + 0.608i)T^{2} \) |
| 37 | \( 1 + (-1.29 - 1.47i)T + (-0.130 + 0.991i)T^{2} \) |
| 41 | \( 1 + (-1.38 + 0.923i)T + (0.382 - 0.923i)T^{2} \) |
| 43 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 47 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + (-0.607 + 0.465i)T + (0.258 - 0.965i)T^{2} \) |
| 59 | \( 1 + (0.965 + 0.258i)T^{2} \) |
| 61 | \( 1 + (0.491 - 0.996i)T + (-0.608 - 0.793i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 73 | \( 1 + (-1.75 + 0.867i)T + (0.608 - 0.793i)T^{2} \) |
| 79 | \( 1 + (-0.793 + 0.608i)T^{2} \) |
| 83 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 89 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + (-1.08 + 1.63i)T + (-0.382 - 0.923i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.781006203448787612187351015419, −7.87653896867605713838268584145, −7.67606139161472491876847317465, −6.77672675544606691710693578942, −5.89534770204695788715587133382, −5.17157349348225090287874028238, −4.59806758497276383273185319618, −3.72470528325408312983827773411, −2.58592458138590962468269932353, −1.06352760584071827954714501542,
0.977053880368121569984014656510, 2.19459518481256367512294349062, 2.95127247097228980962300889175, 3.97184813022316611645190348649, 4.56234685467900187890377288372, 5.42347637440305190712171010385, 6.42968889500937148686319057707, 7.21168515630980874764259205594, 7.893031555386997958214225059611, 9.119075198068544859131457406102