L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.866 + 0.499i)4-s + (−1.83 + 0.241i)5-s + (−0.707 − 0.707i)8-s + (0.258 − 0.965i)9-s + (1.83 + 0.241i)10-s + (0.500 + 0.866i)16-s + (0.258 + 0.965i)17-s + (−0.499 + 0.866i)18-s + (−1.70 − 0.707i)20-s + (2.33 − 0.624i)25-s + (−0.707 + 1.70i)29-s + (−0.258 − 0.965i)32-s − i·34-s + (0.707 − 0.707i)36-s + (−0.241 − 1.83i)37-s + ⋯ |
L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.866 + 0.499i)4-s + (−1.83 + 0.241i)5-s + (−0.707 − 0.707i)8-s + (0.258 − 0.965i)9-s + (1.83 + 0.241i)10-s + (0.500 + 0.866i)16-s + (0.258 + 0.965i)17-s + (−0.499 + 0.866i)18-s + (−1.70 − 0.707i)20-s + (2.33 − 0.624i)25-s + (−0.707 + 1.70i)29-s + (−0.258 − 0.965i)32-s − i·34-s + (0.707 − 0.707i)36-s + (−0.241 − 1.83i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.142 + 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.142 + 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3780176981\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3780176981\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.965 + 0.258i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (-0.258 - 0.965i)T \) |
good | 3 | \( 1 + (-0.258 + 0.965i)T^{2} \) |
| 5 | \( 1 + (1.83 - 0.241i)T + (0.965 - 0.258i)T^{2} \) |
| 11 | \( 1 + (0.965 + 0.258i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 19 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (-0.258 - 0.965i)T^{2} \) |
| 29 | \( 1 + (0.707 - 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 31 | \( 1 + (-0.258 + 0.965i)T^{2} \) |
| 37 | \( 1 + (0.241 + 1.83i)T + (-0.965 + 0.258i)T^{2} \) |
| 41 | \( 1 + (0.292 + 0.707i)T + (-0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 59 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (0.465 - 0.607i)T + (-0.258 - 0.965i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (1.12 + 1.46i)T + (-0.258 + 0.965i)T^{2} \) |
| 79 | \( 1 + (-0.258 - 0.965i)T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.707 + 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.807915988141060156976729614634, −7.82761073893858858827806033756, −7.30860066372174603237912866283, −6.78069591179218972629712007319, −5.80542508151205201063954352372, −4.42053803996716639669785761405, −3.53494915371445483046303017657, −3.30949861999462570812819989718, −1.72835739662762071265245408365, −0.38077843168179938311252986372,
1.05328748996031345716370664575, 2.46550938726616524475874508777, 3.41771687755488308128885370052, 4.51682642026728674104845192389, 5.09621884885345239523807194106, 6.27069439053920585203027812680, 7.16674662065826267922854708039, 7.77028542320002903380815931567, 8.017007572449845541935661207879, 8.820326321199279934147053790763