L(s) = 1 | + (−0.923 + 0.382i)2-s + (0.707 − 0.707i)4-s + (−0.216 − 0.324i)5-s + (−0.382 + 0.923i)8-s + (0.923 + 0.382i)9-s + (0.324 + 0.216i)10-s + (−1 + i)13-s − i·16-s + (0.923 − 0.382i)17-s − 18-s + (−0.382 − 0.0761i)20-s + (0.324 − 0.783i)25-s + (0.541 − 1.30i)26-s + (1.08 + 1.63i)29-s + (0.382 + 0.923i)32-s + ⋯ |
L(s) = 1 | + (−0.923 + 0.382i)2-s + (0.707 − 0.707i)4-s + (−0.216 − 0.324i)5-s + (−0.382 + 0.923i)8-s + (0.923 + 0.382i)9-s + (0.324 + 0.216i)10-s + (−1 + i)13-s − i·16-s + (0.923 − 0.382i)17-s − 18-s + (−0.382 − 0.0761i)20-s + (0.324 − 0.783i)25-s + (0.541 − 1.30i)26-s + (1.08 + 1.63i)29-s + (0.382 + 0.923i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.694 - 0.719i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.694 - 0.719i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8239635632\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8239635632\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.923 - 0.382i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (-0.923 + 0.382i)T \) |
good | 3 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 5 | \( 1 + (0.216 + 0.324i)T + (-0.382 + 0.923i)T^{2} \) |
| 11 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 13 | \( 1 + (1 - i)T - iT^{2} \) |
| 19 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 23 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 29 | \( 1 + (-1.08 - 1.63i)T + (-0.382 + 0.923i)T^{2} \) |
| 31 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 37 | \( 1 + (-0.0761 + 0.382i)T + (-0.923 - 0.382i)T^{2} \) |
| 41 | \( 1 + (0.923 - 1.38i)T + (-0.382 - 0.923i)T^{2} \) |
| 43 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (0.707 - 0.292i)T + (0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 61 | \( 1 + (-0.923 - 0.617i)T + (0.382 + 0.923i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 73 | \( 1 + (1.08 + 1.63i)T + (-0.382 + 0.923i)T^{2} \) |
| 79 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 83 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 + (-1.41 - 1.41i)T + iT^{2} \) |
| 97 | \( 1 + (-1.63 + 1.08i)T + (0.382 - 0.923i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.873452687552963370150654233356, −8.159878161823216832288068538897, −7.39279439346930465545798021079, −6.94840511352471239980478048376, −6.14707267726628780394613229439, −4.92156409662951244539727457085, −4.68053034239972649787745198578, −3.19572815556730129968096934807, −2.09187156278542548737629572141, −1.12894925946816484229440663141,
0.805824639668741540567218698872, 2.03036142762918088964082472660, 3.05561388486647462761963313863, 3.72927509088552573284648618315, 4.79149629415506422368572906480, 5.87811139570125816300917612911, 6.76951078937064599307901175941, 7.42201550867929985063845216218, 7.924341774477703752384414606776, 8.699320653013980198974910490467