L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s − 0.999·8-s + (0.5 − 0.866i)9-s + 2·13-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s + (−0.499 − 0.866i)18-s + (−0.5 − 0.866i)25-s + (1 − 1.73i)26-s + (0.499 + 0.866i)32-s + 0.999·34-s − 0.999·36-s − 0.999·50-s + (−0.999 − 1.73i)52-s + (−1 − 1.73i)53-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s − 0.999·8-s + (0.5 − 0.866i)9-s + 2·13-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)17-s + (−0.499 − 0.866i)18-s + (−0.5 − 0.866i)25-s + (1 − 1.73i)26-s + (0.499 + 0.866i)32-s + 0.999·34-s − 0.999·36-s − 0.999·50-s + (−0.999 − 1.73i)52-s + (−1 − 1.73i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.698712486\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.698712486\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
good | 3 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - 2T + T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.612420346822928727030383580695, −8.176187904380130979774471702948, −6.78421467486257145275805207514, −6.17516738020270335602904850429, −5.62264660835330541231651592472, −4.43172519368160728415277307891, −3.77334980129548481202183683420, −3.24897868620786090643291514224, −1.87312827483466508110981069627, −1.02368798150210056960391418729,
1.43444400753966688670149187750, 2.87969008200034055028423249611, 3.72845319858894840005191816088, 4.47887448849527279390066982580, 5.36332984954896989788059762674, 5.95236142671556961796155853963, 6.76629422866384744025966600858, 7.56244060526558704183467388904, 8.052473101106199130887091473846, 8.870431060253199522193022083744