L(s) = 1 | + (0.826 + 0.563i)2-s + (1.07 + 0.997i)3-s + (0.365 + 0.930i)4-s + (0.326 + 1.42i)6-s + (−0.222 + 0.974i)7-s + (−0.222 + 0.974i)8-s + (0.0858 + 1.14i)9-s + (0.123 − 1.64i)11-s + (−0.535 + 1.36i)12-s + (−1.48 + 0.716i)13-s + (−0.733 + 0.680i)14-s + (−0.733 + 0.680i)16-s + (−0.988 + 0.149i)17-s + (−0.574 + 0.995i)18-s + (−1.21 + 0.825i)21-s + (1.03 − 1.29i)22-s + ⋯ |
L(s) = 1 | + (0.826 + 0.563i)2-s + (1.07 + 0.997i)3-s + (0.365 + 0.930i)4-s + (0.326 + 1.42i)6-s + (−0.222 + 0.974i)7-s + (−0.222 + 0.974i)8-s + (0.0858 + 1.14i)9-s + (0.123 − 1.64i)11-s + (−0.535 + 1.36i)12-s + (−1.48 + 0.716i)13-s + (−0.733 + 0.680i)14-s + (−0.733 + 0.680i)16-s + (−0.988 + 0.149i)17-s + (−0.574 + 0.995i)18-s + (−1.21 + 0.825i)21-s + (1.03 − 1.29i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.788 - 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.788 - 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.643805287\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.643805287\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.826 - 0.563i)T \) |
| 7 | \( 1 + (0.222 - 0.974i)T \) |
| 17 | \( 1 + (0.988 - 0.149i)T \) |
good | 3 | \( 1 + (-1.07 - 0.997i)T + (0.0747 + 0.997i)T^{2} \) |
| 5 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 11 | \( 1 + (-0.123 + 1.64i)T + (-0.988 - 0.149i)T^{2} \) |
| 13 | \( 1 + (1.48 - 0.716i)T + (0.623 - 0.781i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-1.78 - 0.268i)T + (0.955 + 0.294i)T^{2} \) |
| 29 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 31 | \( 1 + (-0.222 + 0.385i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.733 + 0.680i)T^{2} \) |
| 41 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 43 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 47 | \( 1 + (-0.365 - 0.930i)T^{2} \) |
| 53 | \( 1 + (-0.698 - 1.77i)T + (-0.733 + 0.680i)T^{2} \) |
| 59 | \( 1 + (-0.826 - 0.563i)T^{2} \) |
| 61 | \( 1 + (0.733 + 0.680i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-1.19 + 1.49i)T + (-0.222 - 0.974i)T^{2} \) |
| 73 | \( 1 + (-0.365 + 0.930i)T^{2} \) |
| 79 | \( 1 + (0.0747 + 0.129i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 89 | \( 1 + (0.109 + 1.46i)T + (-0.988 + 0.149i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.937730197703749650705230046209, −8.593087098413169333763051584442, −7.67117638926138256578536042968, −6.74613164831219358505131455846, −6.04426785038665616761933193876, −5.04608867991879544415148746046, −4.58963459809122223897302548880, −3.59415688858260929646012335062, −2.85115601639572777960728600911, −2.41003159538276845698564349626,
1.07231411769789858903287804612, 2.16847270106598409535094042219, 2.71919204563519525814081229379, 3.60168505156113376170457642241, 4.71558675284602551113130893236, 5.04599577836607542743858719286, 6.67677375617829792267924019299, 7.12825441457105176537371332551, 7.30551017284067067559250722141, 8.486055933468817757783081379872